Affiner votre recherche
Résultats 361-370 de 8,010
Persistent organic pollutants in eggs from south Texas Aplomado falcons Texte intégral
2021
Hidalgo, Chelsea M. | Mora, Miguel A. | Sericano, Jose L. | Mutch, Brian D. | Juergens, Paul W.
A program to reintroduce the Northern Aplomado falcon (Falco femoralis septentrionalis) in south Texas and the southwestern United States was initiated in the late 1970s. Fledgling Aplomado falcons were first released in the Laguna Atascosa National Wildlife Refuge in 1993 and the first nesting pair in the area was recorded by 1995. During 2004–2017 we collected addled eggs from nesting pairs in the Laguna Atascosa National Wildlife Refuge and Matagorda Island in south Texas, to determine if environmental contaminants in Aplomado falcon eggs had decreased over time and if eggshell thickness values were similar to those in the pre-DDT era. We analyzed organochlorine pesticides, PCBs, and PBDEs in 60 egg homogenates by gas chromatography-mass spectrometry. Eggshells were measured to determine thickness and to correlate with contaminant concentrations. Mean concentration in eggs were 244 ng/g ww for p,p’- DDE, 270 ng/g ww for PCBs and 10 ng/g ww for PBDEs. These values were lower than those reported in a previous study for eggs collected between 1999 and 2003, with a mean of 821 ng/g ww for p,p’-DDE and 1228 ng/g ww for total PCBs. Eggshell thickness ranged from 0.206 mm to 0.320 mm (n = 156). Overall, contaminant concentrations in eggs of Aplomado falcons were low, at levels not likely to impact the recovery of the species. Data from this and previous studies indicate that DDE has decreased significantly in eggs of Aplomado falcons over the last 25 years in south Texas. Breeding populations have been steady at over 30 breeding pairs in south Texas since 2011, although they decreased to 24 pairs in 2018 following Hurricane Harvey.
Afficher plus [+] Moins [-]Exposure time modulates the effects of climate change-related stressors on fertile sporophytes and early-life stage performance of a habitat-forming kelp species Texte intégral
2021
González, Claudio P. | Edding, Mario | Tala, Fadia | Torres, Rodrigo | Manríquez, Patricio H.
Understanding the impact of increases in pCO₂ (OA) and extreme changes in temperature on marine organisms is critical to predicting how they will cope with climate change. We evaluated the effects of OA as well as warming and cooling trend temperature on early reproductive traits of Lessonia trabeculata, a bio-engineer kelp species. Sori discs were maintained for an exposure time (ET) of 3 (T3) and 7 (T7) days to one of two contrasting pCO₂ levels (450 and 1100 μatm). In addition, at each pCO₂ level, they were subjected to three temperature treatments: 15 °C (control), 10 °C (cool) and 19 °C (warm). Subsequently, we compared sorus photosynthetic performance (Fv/Fm), the number of meiospores released (MR) and their germination rate (GR) after 48 h of settlement, with values obtained from sori discs not exposed (DNE) to the treatments. The Fv/Fm measured for DNE was lower than at T3 and T7 at 10 and 15 °C but not at 19 °C. Regardless of temperature, we found no significant differences between MR measured at T0 and T3. MR at T7 was significantly lower at 19 °C than at 10 and 15 °C. We found only a significant reduction in MR in response to elevated pCO₂ at T3. The GR of meiospores released by DNE and then maintained for 48 h to 19 °C decreased significantly by ~33% when compared with those maintained for the same time at 10 and 15 °C. A similar, but more drastic reduction (~54%) in the GR was found in meiospores released by sori discs exposed for T3 and maintained for 48 h to 19 °C. We suggest that OA and warming trend will threaten the early establishment of this species with further consequences for the functioning of the associated ecosystem.
Afficher plus [+] Moins [-]Cumulative health risks for bisphenols using the maximum cumulative ratio among Chinese pregnant women Texte intégral
2021
Li, Jiufeng | Zhang, Wenxin | Zhou, Yanqiu | Shi, Jingchun | Xia, Wei | Xu, Shunqing | Cai, Zongwei
Bisphenol A and its alternatives are frequently detected in environmental and human samples, but studies associated with the pattern of combined health hazards from the exposure to the bisphenol mixtures are lacking, particularly for pregnant women. Here, we recruited 941 pregnant women with a full set of urine samples in the three trimesters collected under a cohort study project in Wuhan, China, between 2014 and 2015. We measured the concentrations of 8 bisphenols in 2823 urine samples, and calculated the average concentrations of bisphenols, which were detected in over 50% of samples, once during each trimester of pregnancy. We calculated the maximum cumulative ratio (MCR) on basis of estimated daily intake (EDI), hazard quotient (HQ), hazard index (HI) of three major bisphenols, including bisphenol A (BPA), bisphenol F (BPF), and bisphenol S (BPS), to find which one or mixtures drive risks. Participants were categorized into four groups according to their maximum HQ, HI and MCR values. We found negative relationships between log(MCR-1) and log(HI) with the slope (−0.6431). Percentage of HQ of BPA in HI ranged from 37.1% (<25th percentiles of HI) to 75.5% (>95th percentiles of HI) indicating the upward trend of dominance by BPA at increasing HI ranges. The cumulative health risks of bisphenol exposures largely originated from the health hazards of BPA and BPS, particularly BPA. The intervention for regulation on the production and application of BPA and its alternatives are urgent, and China should consider national regulation on these chemicals based on its risk to human health.
Afficher plus [+] Moins [-]Cytotoxic effects of wildfire ashes: In-vitro responses of skin cells Texte intégral
2021
Ré, Ana | Rocha, Ana Teresa | Campos, Isabel | Keizer, Jan Jacob | Gonçalves, Fernando J.M. | Silva, Helena Oliveira da | Pereira, Joana Luísa | Abrantes, Nelson
Wildfires are a complex environmental problem worldwide. The ashes produced during the fire bear metals and PAHs with high toxicity and environmental persistence. These are mobilized into downhill waterbodies, where they can impair water quality and human health. In this context, the present study aimed at assessing the toxicity of mimicked wildfire runoff to human skin cells, providing a first view on the human health hazardous potential of such matrices. Human keratinocytes (HaCaT) were exposed to aqueous extracts of ashes (AEA) prepared from ash deposited in the soil after wildfires burned a pine or a eucalypt forest stand. Cytotoxicity (MTT assay) and changes in cell cycle dynamics (flow cytometry) were assessed. Cell viability decreased with increasing concentrations of AEA, regardless of the ash source, the extracts preparation method (filtered or unfiltered to address the dissolved or the total fractions of contaminants, respectively) or the exposure period (24 and 48 h). The cells growth was also negatively affected by the tested AEA matrices, as evidenced by a deceleration of the progress through the cell cycle, namely from phase G0/G1 to G2. The cytotoxicity of AEA could be related to particulate and dissolved metal content, but the particles themselves may directly affect the cell membrane. Eucalypt ash was apparently more cytotoxic than pine ash due to differential ash metal burden and mobility to the water phase. The deceleration of the cell cycle can be explained by the attempt of cells to repair metal-induced DNA damage, while if this checkpoint and repair pathways are not well coordinated by metal interference, genomic instability may occur. Globally, our results trigger public health concerns since the burnt areas frequently stand in slopes of watershed that serve as recreation sites and sources of drinking water, thus promoting human exposure to wildfire-driven contamination.
Afficher plus [+] Moins [-]Holo- and hemimetabolism of aquatic insects: Implications for a differential cross-ecosystem flux of metals Texte intégral
2021
Cetinić, Katarina A. | Previšić, Ana | Rožman, Marko
Increased metal concentrations in aquatic habitats come as a result of both anthropogenic and natural sources. Emerging aquatic insects that play an indispensable role in these environments, transferring resources and energy to higher trophic levels in both aquatic and terrestrial habitats, may inadvertently also act as biovectors for metals and other contaminants. This study measured levels of 22 different metals detected in biofilm, aquatic and terrestrial life stages of Trichoptera and Odonata, as well as riparian spiders, to examine the uptake and transfer from freshwater to terrestrial ecosystems. We show that emerging insects transfer metals from aquatic to terrestrial ecosystems, however with large losses observed on the boundary of these two environments. Significantly lower concentrations of most metals in adult insects were observed in both hemimetabolous (Odonata) and holometabolous insect orders (Trichoptera). In holometabolous Trichoptera, however, this difference was greater between aquatic life stages (larvae to pupae) compared to that between pupae and adults. Trophic transfer may have also played a role in decreasing metal concentrations, as metal concentrations generally adhered to the following pattern: biofilm > aquatic insects > terrestrial invertebrates. Exceptions to this observation were detected with a handful of essential (Cu, Zn, Se) and non-essential metals (Cd, Ag), which measured higher concentrations in adult aquatic insects compared to their larval counterparts, as well as in aquatic and terrestrial predators compared to their prey. Overall, all metals were found to be bioavailable and biotransferred from contaminated waters to terrestrial invertebrates to some degree, suggesting that risks associated with metal-contaminated freshwaters could extend to terrestrial systems through the emergence of these potential invertebrate biovectors.
Afficher plus [+] Moins [-]Contribution of anthropogenic and natural sources in PM10 during North African dust events in Southern Europe Texte intégral
2021
Millán-Martínez, María | Sánchez-Rodas, Daniel | Sánchez de la Campa, Ana M. | Rosa, Jesús de la
The influence of North African (NAF) dust events on the air quality at the regional level (12 representative monitoring stations) in Southern Europe during a long time series (2007–2014) was studied. PM10 levels and chemical composition were separated by Atlantic (ATL) and NAF air masses. An increase in the average PM10 concentrations was observed on sampling days with NAF dust influence (42 μg m⁻³) when compared to ATL air masses (29 μg m⁻³). Major compounds such as crustal components and secondary inorganic compounds (SIC), as well as toxic trace elements derived from industrial emissions, also showed higher concentrations of NAF events. A source contribution analysis using positive matrix factorisation (PMF) 5.0 of the PM10 chemical data, discriminating ATL and NAF air mass origins, allowed the identification of five sources: crustal, sea salt, traffic, regional, and industrial. A higher contribution (74%) of the natural sources to PM10 concentrations was confirmed under NAF episodes compared with ATL. Furthermore, there was an increase in anthropogenic sources during these events (51%), indicating the important influence of the NAF air masses on these sources. The results of this study highlight that environmental managers should take appropriate actions to reduce local emissions during NAF events to ensure good air quality.
Afficher plus [+] Moins [-]Occurance, emission and environmental effects of non-methane hydrocarbons in the Yellow Sea and the East China Sea Texte intégral
2021
Wu, Ying-Cui | Li, Jian-Long | Wang, Jian | Zhuang, Guang-Chao | Liu, Xi-Ting | Zhang, Hong-Hai | Yang, Gui-Peng
The spatial distributions, fluxes, and environmental effects of non-methane hydrocarbons (NMHCs) were investigated in the Yellow Sea (YS) and the East China Sea (ECS) in spring. The average concentrations of ethane, propane, i-/n-butane, ethylene, propylene and isoprene in the seawater were 18.1 ± 6.4, 15.4 ± 4.7, 6.8 ± 2.9, 6.4 ± 3.2, 67.1 ± 26.7, 20.5 ± 8.7 and 17.1 ± 11.1 pmol L⁻¹, respectively. The alkenes in the surface seawater were more abundant than their saturated homologs and NMHCs concentrations (with the exception of isoprene) decreased with carbon number. The spatial variations of isoprene were consistent with the distributions of chlorophyll a (Chl-a) and Chaetoceros, Skeletonema, Nitzschia mainly contributed to the production of isoprene, while the others’ distributions might be related to their photochemical production. Observations in atmospheric NMHCs indicated alkanes in the marine atmosphere decreased from inshore to offshore due to influence of the continental emissions, while alkenes were largely derived from the oceanic source. In addition, no apparent diurnal discrepancy of atmospheric NMHCs (except for isoprene) were found between daytime and night. As the main sink of NMHCs in seawater, the average sea-to-air fluxes of ethane, propane, i-/n-butane, ethylene and propylene were 31.70, 29.75, 18.49, 15.89, 239.6, 67.94 and 52.41 nmol m⁻² d⁻¹, respectively. The average annual emissions of isoprene accounted for 0.1–1.3% of the global ocean emissions, which indicated that the coastal and shelf areas might be significant sources of isoprene. Furthermore, this study represents the first effort to estimate the environmental effects caused by NMHCs over the YS and the ECS and the results demonstrated contributions of alkanes to ozone and secondary organic aerosol (SOA) formation were lower than those of the alkenes and the largest contributor was isoprene.
Afficher plus [+] Moins [-]Catalytic upgrade for pyrolysis of food waste in a bubbling fluidized-bed reactor Texte intégral
2021
Ly, Hoang Vu | Tran, Quoc Khanh | Kim, Seung-Soo | Kim, Jinsoo | Choi, Suk Soon | Oh, Changho
Biofuel production via pyrolysis has received increasing interest as a promising solution for utilization of now wasted food residue. In this study, the fast pyrolysis of mixed food waste (MFW) was performed in a bubbling fluidized-bed reactor. This was done under different operating conditions (reaction temperatures and carrier gas flow rate) that influence product distribution and bio-oil composition. The highest liquid yield (49.05 wt%) was observed at a pyrolysis temperature of 475 °C. It was also found that the quality of pyrolysis bio-oils (POs) could be improved using catalysts. The catalytic fast pyrolysis of MFW was studied to upgrade the pyrolysis vapor, using dolomite, red mud, and HZSM-5. The higher heating values (HHVs) of the catalytic pyrolysis bio-oils (CPOs) ranged between 30.47 and 35.69 MJ/kg, which are higher than the HHVs of non-catalytic pyrolysis bio-oils (27.69–31.58 MJ/kg). The major components of the bio-oils were fatty acids, N-containing compounds, and derivatives of phenol. The selectivity for bio-oil components varied depending on the catalysts. In the presence of the catalysts, the oxygen was removed from oxygenates via moisture, CO₂, and CO. The CPOs contained aliphatic hydrocarbons, polycyclic aromatic compounds (such as naphthalene), pyridine derivatives, and light oxygenates (cyclic alkenes and ketones).
Afficher plus [+] Moins [-]Effects of polyethylene microplastics on the microbiome and metabolism in larval zebrafish Texte intégral
2021
Zhao, Yao | Qin, Zhen | Huang, Zhuizui | Bao, Zhiwei | Luo, Ting | Jin, Yuanxiang
Various microplastics (MPs) are found in the environment and organisms. MP residues in organisms can affect health; however, their impacts on metabolism in aquatic organisms remain unclear. In this study, zebrafish embryos were exposed to polyethylene MPs with sizes ranging from 1 to 4 μm at concentrations of 0, 10, 100, and 1000 μg/L for 7 days. Through qPCR technology, the results indicated that zebrafish exposed to polyethylene MPs exhibited significant change in microbes of the phyla Firmicutes, Bacteroidetes, Proteobacteria, and Verrucomicrobia, etc. Moreover, 16S RNA gene sequencing revealed that there was a significant difference in alpha diversity between the control and 1000 μg/L MP-treated groups. At the genus level, the abundance of Aeromonas, Shewanella, Microbacterium, Nevskia and Methyloversatilis have increased remarkably. Conversely, the abundance of Pseudomonas, Ralstonia and Stenotrophomonas were significant reduction after MPs exposure. In addition, the levels of TG (triglyceride), TCHO (total cholesterol), NEFA (nonesterified fatty acid), TBA (total bile acid), GLU (glucose) and pyruvic acid significantly changed in MP-treated larval zebrafish, indicating that their metabolism was disturbed by MPs. Transcriptional levels of glucose and lipid metabolism-related genes showed a decreasing trend. Furthermore, LC/MS-based nontargeted metabolomics analysis demonstrated that a total of 59 phospholipid-related substances exhibited significant changes in larval fish treated with 1000 μg/L MPs. The mRNA levels of phospholipid metabolism-related genes were also obviously changed. Pearson correlation analysis indicated that the abundance of Aeromonas, Shewanella and Chitinibacter bacteria showed a negative correlation with most phospholipids, while Nevskia, Parvibacter and Lysobacter showed a positive correlation with most phospholipids. Based on these results, it is suggested that 1–4 μm PE-MPs could impact the microbiome and metabolism of larval zebrafish. All of these results indicated that the health risk of MPs cannot be ignored.
Afficher plus [+] Moins [-]Estimation of commercial cooking emissions in real-world operation: Particulate and gaseous emission factors, activity influencing and modelling Texte intégral
2021
Lin, Pengchuan | Gao, Jian | He, Wanqing | Nie, Lei | Schauer, James J. | Yang, Shujian | Xu, Yisheng | Zhang, Yuanxun
Measurements of real-world cooking emission factors (CEFs) were rarely reported in recent year's studies. However, the needs for accurately estimating CEFs to produce cooking emission inventories and further implement controlling measures are urgent. In this study, we collected cooking emission aerosols from real-world commercial location operations in Beijing, China. 2 particulate (PM₂.₅, OC) and 2 gaseous (NMHC, OVOCs) CEF species were examined on influencing activity conditions of cuisine type, controlling technology, operation scales (represented by cook stove numbers), air exhausting volume, as well as location and operation period. Measured NMHC emission factors (Non-barbecue: 8.19 ± 9.06 g/h and Barbecue: 35.48 ± 11.98 g/h) were about 2 times higher than PM₂.₅ emission factors (Non-barbecue: 4.88 ± 3.43 g/h and Barbecue: 15.48 ± 7.22 g/h). T-test analysis results showed a significantly higher barbecued type CEFs than non-barbecued cuisines for both particulate and gaseous emission factor species. The efficacy of controlling technology was showing an average of 50 % in decreasing PM₂.₅ CEFs while a 50 % in increasing OC particulate CEFs. The effects of controlling equipment were not significant in removing NMHC and OVOCs exhaust concentrations. CEF variations within cook stove numbers and air exhausting volume also reflected a comprehensive effect of operation scale, cuisine type and control technology. The simulations among activity influencing factors and CEFs were further determined and estimated using hierarchical multiple regression model. The R square of this simulated model for PM₂.₅ CEFs was 0.80 (6.17 × 10–⁹) with standardized regression coefficient of cuisine type, location, sampling period, control technology, cook stove number (N) and N² of 5.18 (0.02), 5.33 (0.02), 1.93 (0.19), 9.29 (4.18 × 10–⁶), 9.10 (1.71 × 10–³) and −1.18 (2.43 × 10–³), respectively. In perspective, our study provides ways of better estimating CEFs in real operation conditions and potentially highlighting much more importance of cooking emissions on air quality and human health.
Afficher plus [+] Moins [-]