Affiner votre recherche
Résultats 371-380 de 4,308
Matrix-specific distribution and diastereomeric profiles of hexabromocyclododecane (HBCD) in a multimedia environment: Air, soil, sludge, sediment, and fish Texte intégral
2017
Jo, Hyeyeong | Son, Min-Hui | Seo, Sung-Hee | Chang, Yoon Seok
Hexabromocyclododecane (HBCD) contamination and its diastereomeric profile were investigated in a multi-media environment along a river at the local scale in air, soil, sludge, sediment, and fish samples. The spatial distribution of HBCD in each matrix showed a different result. The highest concentrations of HBCD in air and soil were detected near a general industrial complex; in the sediment and sludge samples, they were detected in the down-stream region (i.e., urban area). Each matrix showed the specific distribution patterns of HBCD diastereomers, suggesting continuous inputs of contaminants, different physicochemical properties, or isomerizations. The particle phases in air, sludge, and fish matrices were dominated by α-HBCD, owing to HBCD's various isomerization processes and different degradation rate in the environment, and metabolic capabilities of the fish; in contrast, the sediment and soil matrices were dominated by γ-HBCD because of the major composition of the technical mixtures and the strong adsorption onto solid particles. Based on these results, the prevalent and matrix-specific distribution of HBCD diastereomers suggested that more careful consideration should be given to the characteristics of the matrices and their effects on the potential influence of HBCD at the diastereomeric level.
Afficher plus [+] Moins [-]Screening of Bacillus strains isolated from mangrove ecosystems in Peninsular Malaysia for microplastic degradation Texte intégral
2017
Auta, H.S. | Emenike, C.U. | Fauziah, S.H.
The continuous accumulation of microplastics in the environment poses ecological threats and has been an increasing problem worldwide. In this study, eight bacterial strains were isolated from mangrove sediment in Peninsular Malaysia to mitigate the environmental impact of microplastics and develop a clean-up option. The bacterial isolates were screened for their potential to degrade UV-treated microplastics from polyethylene (PE), polyethylene terephthalate (PET), polypropylene (PP), and polystyrene (PS). Only two isolates, namely, Bacillus cereus and Bacillus gottheilii, grew on a synthetic medium containing different microplastic polymers as the sole carbon source. A shake flask experiment was carried out to further evaluate the biodegradability potential of the isolates. Degradation was monitored by recording the weight loss of microplastics and the growth pattern of the isolates in the mineral medium. The biodegradation extent was validated by assessment of the morphological and structural changes through scanning electron microscopy and Fourier transform infrared spectroscopy analyses. The calculated weight loss percentages of the microplastic particles by B. cereus after 40 days were 1.6%, 6.6%, and 7.4% for PE, PET, and PS, respectively. B. gottheilii recorded weight loss percentages of 6.2%, 3.0%, 3.6%, and 5.8% for PE, PET, PP, and PS, respectively. The designated isolates degraded the microplastic material and exhibited potential for remediation of microplastic-contaminated environment. Biodegradation tests must be conducted to characterize the varied responses of microbes toward pollutants, such as microplastics. Hence, a novel approach for biodegradation of microplastics must be developed to help mitigate the environmental impact of plastics and microplastic polymers.
Afficher plus [+] Moins [-]Combined acid rain and lanthanum pollution and its potential ecological risk for nitrogen assimilation in soybean seedling roots Texte intégral
2017
Zhang, Fan | Cheng, Mengzhu | Sun, Zhaoguo | Wang, Lihong | Zhou, Qing | Huang, Xiaohua
Rare earth elements (REEs) are used in various fields, resulting in their accumulation in the environment. This accumulation has affected the survival and distribution of crops in various ways. Acid rain is a serious global environmental problem. The combined effects on crops from these two types of pollution have been reported, but the effects on crop root nitrogen assimilation are rarely known. To explore the impact of combined contamination from these two pollutants on crop nitrogen assimilation, the soybean seedlings were treated with simulated environmental pollution from acid rain and a representative rare earth ion, lanthanum ion (La³⁺), then the indexes related to plant nitrogen assimilation process in roots were determined. The results showed that combined treatment with pH 4.5 acid rain and 0.08 mM La³⁺ promoted nitrogen assimilation synergistically, while the other combined treatments all showed inhibitory effects. Moreover, acid rain aggravated the inhibitory effect of 1.20 or 0.40 mM La³⁺ on nitrogen assimilation in soybean seedling roots. Thus, the effects of acid rain and La³⁺ on crops depended on the combination levels of acid rain intensity and La³⁺ concentration. Acid rain increases the bioavailability of La³⁺, and the combined effects of these two pollutants were more serious than that of either pollutant alone. These results provide new evidence in favor of limiting overuse of REEs in agriculture. This work also provides a new framework for ecological risk assessment of combined acid rain and REEs pollution on soybean crops.
Afficher plus [+] Moins [-]Air quality considerations for stormwater green street design Texte intégral
2017
Shaneyfelt, Kathryn M. | Anderson, Andrew R. | Kumar, Prashant | Hunt, W. F. (William Frederick)
Green streets are increasingly being used as a stormwater management strategy to mitigate stormwater runoff at its source while providing other environmental and societal benefits, including connecting pedestrians to the street. Simultaneously, human exposure to particulate matter from urban transportation is of major concern worldwide due to the proximity of pedestrians, drivers, and cyclists to the emission sources. Vegetation used for stormwater treatment can help designers limit the exposure of people to air pollutants. This goal can be achieved through the deliberate placement of green streets, along with strategic planting schemes that maximize pollutant dispersion. This communication presents general design considerations for green streets that combine stormwater management and air quality goals. There is currently limited guidance on designing green streets for air quality considerations; this is the first communication to offer suggestions and advice for the design of green stormwater streets in regards to their effects on air quality. Street characteristics including (1) the width to height ratio of the street to the buildings, (2) the type of trees and their location, and (3) any prevailing winds can have an impact on pollutant concentrations within the street and along sidewalks. Vegetation within stormwater control measures has the ability to reduce particulate matter concentrations; however, it must be carefully selected and placed within the green street to promote the dispersion of air flow.
Afficher plus [+] Moins [-]External costs of PM2.5 pollution in Beijing, China: Uncertainty analysis of multiple health impacts and costs Texte intégral
2017
Yin, Hao | Pizzol, Massimo | Xu, Linyu
Some cities in China are facing serious air pollution problems including high concentrations of particles, SO2 and NOx. Exposure to PM2.5, one of the primary air pollutants in many cities in China, is highly correlated with various adverse health impacts and ultimately represents a cost for society. The aim of this study is to assess health impacts and external costs related to PM2.5 pollution in Beijing, China with different baseline concentrations and valuation methods. The idea is to provide a reasonable estimate of the total health impacts and external cost due to PM2.5 pollution, as well as a quantification of the relevant uncertainty. PM2.5 concentrations were retrieved for the entire 2012 period in 16 districts of Beijing. The various PM2.5 related health impacts were identified and classified to avoid double counting. Exposure-response coefficients were then obtained from literature. Both the value of statistical life (VSL) and the amended human capital (AHC) approach were applied for external costs estimation, which could provide the upper and lower bound of the external costs due to PM2.5. To fully understand the uncertainty levels, the external cost distribution was determined via Monte Carlo simulation based on the uncertainty of the parameters such as PM2.5 concentration, exposure-response coefficients, and economic cost per case. The results showed that the external costs were equivalent to around 0.3% (AHC, China's guideline: C0 = 35 μg/m3) to 0.9% (VSL, WHO guideline: C0 = 10 μg/m3) of regional GDP depending on the valuation method and on the assumed baseline PM2.5 concentration (C0). Among all the health impacts, the economic loss due to premature deaths accounted for more than 80% of the overall external costs. The results of this study could help policymakers prioritizing the PM2.5 pollution control interventions and internalize the external costs through the application of economic policy instruments.
Afficher plus [+] Moins [-]Fate of phenanthrene and mineralization of its non-extractable residues in an oxic soil Texte intégral
2017
Wang, Yongfeng | Xu, Jun | Shan, Jun | Ma, Yini | Ji, Rong
The fate of organic pollutants in the environment, especially the formation and stability of non-extractable (i.e., bound) residues (NERs) determines their environmental risk. Using ¹⁴C-tracers, we studied the fate of the carcinogen phenanthrene in active or sterilized oxic loamy soil in the absence and presence of the geophagous earthworm Metaphire guillelmi and characterized the NERs derived from phenanthrene. After incubation of ¹⁴C-phenanthrene in active soil for 28 days, 40 ± 3.1% of the initial amount was mineralized and 70.1 ± 1.9% was converted to NERs. Most of the NERs (>92%) were bound to soil humin. Silylation of the humin-bound residues released 45.3 ± 5.3% of these residues, which indicated that they were physically entrapped, whereas the remainder of the residues were chemically bound or biogenic. By contrast, in sterilized soil, only 43.4 ± 12.6% of the phenanthrene was converted to NERs and all of these residues were completely released upon silylation, which underlines the essential role of microbial activity in NER formation. The presence of M. guillelmi in active soil significantly inhibited phenanthrene mineralization (24.4 ± 2.6% mineralized), but NER formation was not significantly affected. Only a small amount of phenanthrene-derived residues (1.9–5.3% of the initial amount) accumulated in the earthworm body. When humin-bound residues were mixed with fresh soil, 33.9% (humin recovered from active soils) and 12.4% (humin recovered from sterilized soils) of the residues were mineralized after 75 days of incubation, respectively, which indicated a high bioavailability of NERs, albeit lower than the initial addition of phenanthrene. Our results indicated that many phenanthrene-derived NERs, especially those physically entrapped, are still bioavailable and may pose a toxic threat to soil organisms.
Afficher plus [+] Moins [-]Distinct succession patterns of abundant and rare bacteria in temporal microcosms with pollutants Texte intégral
2017
Jiao, Shuo | Luo, Yantao | Lu, Mingmei | Xiao, Xiao | Lin, Yanbing | Chen, Weimin | Wei, Gehong
Elucidating the driving forces behind the temporal dynamics of abundant and rare microbes is essential for understanding the assembly and succession of microbial communities. Here, we explored the successional trajectories and mechanisms of abundant and rare bacteria via soil-enrichment subcultures in response to various pollutants (phenanthrene, n-octadecane, and CdCl2) using time-series Illumina sequencing datasets. The results reveal different successional patterns of abundant and rare sub-communities in eighty pollutant-degrading consortia and two original soil samples. A temporal decrease in α-diversity and high turnover rate for β-diversity indicate that deterministic processes are the main drivers of the succession of the abundant sub-community; however, the high cumulative species richness indicates that stochastic processes drive the succession of the rare sub-community. A functional prediction showed that abundant bacteria contribute primary functions to the pollutant-degrading consortia, such as amino acid metabolism, cellular responses to stress, and hydrocarbon degradation. Meanwhile, rare bacteria contribute a substantial fraction of auxiliary functions, such as carbohydrate-active enzymes, fermentation, and homoacetogenesis, which indicates their roles as a source of functional diversity. Our study suggests that the temporal succession of microbes in polluted microcosms is mainly associated with abundant bacteria rather than the high proportion of rare taxa. The major forces (i.e., stochastic or deterministic processes) driving microbial succession could be dependent on the low- or high-abundance community members in temporal microcosms with pollutants.
Afficher plus [+] Moins [-]Hyperspectral leaf reflectance of Carpinus betulus L. saplings for urban air quality estimation Texte intégral
2017
Brackx, Melanka | Van Wittenberghe, Shari | Verhelst, Jolien | Scheunders, Paul | Samson, Roeland
In urban areas, the demand for local assessment of air quality is high. The existing monitoring stations cannot fulfill the needs. This study assesses the potential of hyperspectral tree leaf reflectance for monitoring traffic related air pollution. Hereto, 29 Carpinus betulus saplings were exposed to an environment with either high or low traffic intensity. The local air quality was estimated by leaf saturation isothermal remanent magnetization (SIRM). The VIS-NIR leaf reflectance spectrum (350–2500 nm) was measured using a handheld AgriSpec spectroradiometer (ASD Inc.). Secondary, leaf chlorophyll content index (CCI), specific leaf area (SLA) and water content (WC) were determined. To gain insight in the link between leaf reflectance and air quality, the correlation between SIRM and several spectral features was determined. The spectral features that were tested are plain reflectance values, derivative of reflectance, two-band indices using the NDVI formula and PCA components. Spectral reflectance for wavelength bands in the red and short wave IR around the red edge, were correlated to SIRM with Pearson correlations of up to R = −0.85 (R² = 0.72). Based on the spectral features and combinations thereof, binomial logistic regression models were trained to classify trees into high or low traffic pollution exposure, with classification accuracies up to 90%. It can be concluded that hyperspectral reflectance of C. betulus leaves can be used to detect different levels of air pollution within an urban environment.
Afficher plus [+] Moins [-]Arthropod communities in a selenium-contaminated habitat with a focus on ant species Texte intégral
2017
De La Riva, Deborah G. | Hladun, Kristen R. | Vindiola, Beatriz G. | Trumble, John T.
The selenium contamination event that occurred at Kesterson Reservoir (Merced Co., CA) during the 1970–80s is a frequently cited example for the negative effects of contamination on wildlife. Despite the importance of arthropods for ecosystem services and functioning, relatively little information is available as to the impacts of pollution on arthropod community dynamics. We conducted surveys of the arthropod community present at Kesterson Reservoir to assess the impacts of selenium contamination on arthropod diversity, with a focus on ant species richness, composition and density. Trophic groups were compared to determine which arthropods were potentially receiving the greatest selenium exposure. Plant samples were analyzed to determine the selenium content by site and by location within plant. Soil concentrations varied across the study sites, but not across habitat types. Topsoil contained higher levels of selenium compared to core samples. Plants contained similar concentrations of selenium in their leaves, stems and flowers, but flowers contained the greatest range of concentrations. Individuals within the detritivores/decomposers and predators accumulated the greatest concentrations of selenium, whereas nectarivores contained the lowest concentrations. Species composition differed across the sites: Dorymyrmex bicolor was located only at the site containing the greatest soil selenium concentration, but Solenopsis xyloni was found at most sites and was predominant at six of the sites. Selenium concentrations in ants varied by species and collection sites. Nest density was also found to differ across sites, but was not related to soil selenium or any of the habitat variables measured in our study. Selenium was not found to impact species richness, but was a significant variable for the occurrence of two out of the eight native species identified.
Afficher plus [+] Moins [-]Homing pigeons externally exposed to Deepwater Horizon crude oil change flight performance and behavior Texte intégral
2017
Perez, Cristina R. | Moye, John K. | Cacela, Dave | Dean, Karen M. | Pritsos, Chris A.
The Deepwater Horizon oil spill was the largest in U.S. history, contaminating thousands of miles of coastal habitat and affecting the lives of many avian species. The Gulf of Mexico is a critical bird migration route area and migrants that were oiled but did not suffer mortality as a direct result of the spill faced unpredictable fates. This study utilized homing pigeons as a surrogate species for migratory birds to investigate the effects a single low level external oiling event has on the flight performance and behavior of birds flying repeated 161 km flights. Data from GPS data loggers showed that lightly oiled pigeons changed their flight paths, increased their flight durations by 2.6 fold, increased their flight distances by 28 km and subsequently decreased their route efficiencies. Oiled birds also exhibited reduced rate of weight gain between flights. Our data suggest that contaminated birds surviving the oil spill may have experienced flight impairment and reduced refueling abilities, likely reducing overall migration speed. Our findings contribute new information on how oil spills affect avian species, as the effects of oil on the flight behavior of long distance free-flying birds have not been previously described.
Afficher plus [+] Moins [-]