Affiner votre recherche
Résultats 3731-3740 de 4,043
The influence of chemically enhanced backwash by-products (CEBBPs) on water quality in the coagulation–ultrafiltration process Texte intégral
2016
Zhang, Yue | Zhao, Xinhua | Zhang, Xinbo | Sun, Jingmei
This study was conducted to investigate the typical types of chemically enhanced backwash by-products (CEBBPs) produced in the chemically enhanced backwash (CEB) process and the influence of CEB parameters on typical CEBBPs in the coagulation–ultrafiltration process. Health risk assessment was applied to assess the potential adverse health effect from exposure to effluent after the optimal CEB. The results indicated that backwash reagent of sodium hypochlorite reacted with organic matter to produce CEBBPs, including 12 species of volatile halogenated organic compounds (VHOCs) and 9 species of haloacetic acids (HAAs) during CEB process. The amount of HAAs was higher than that of VHOCs indicating that the content of primary HAA precursor (hydrophilic organic matter) was high in raw surface water and the coagulation process could not lower the hydrophilic organic matter concentration. After comprehensive consideration of the influence of single factors on the CEBBP formation and membrane cleaning effect, the optimal CEB parameters was 4 min of backwash duration, 120 min of backwash interval, 20 L/(m²·h) of backwash flux, and 25 mg/L of reagent concentration. Under the optimum CEB cleaning parameters, the effluent did not pose non-carcinogenic risk to local residents but could pose potential carcinogenic risk.
Afficher plus [+] Moins [-]Technical feasibility study of a low-cost hybrid PAC-UF system for wastewater reclamation and reuse: a focus on feedwater production for low-pressure boilers Texte intégral
2016
Amosa, Mutiu Kolade | Jami, Mohammed Saedi | Alkhatib, Ma’an Fahmi R. | Majozi, Thokozani
This study has applied the concept of the hybrid PAC-UF process in the treatment of the final effluent of the palm oil industry for reuse as feedwater for low-pressure boilers. In a bench-scale set-up, a low-cost empty fruit bunch-based powdered activated carbon (PAC) was employed for upstream adsorption of biotreated palm oil mill effluent (BPOME) with the process conditions: 60 g/L dose of PAC, 68 min of mixing time and 200 rpm of mixing speed, to reduce the feedwater strength, alleviate probable fouling of the membranes and thus improve the process flux (productivity). Three polyethersulfone ultrafiltration membranes of molecular weight cut-off (MWCO) of 1, 5 and 10 kDa were investigated in a cross-flow filtration mode, and under constant transmembrane pressures of 40, 80, and 120 kPa. The permeate qualities of the hybrid processes were evaluated, and it was found that the integrated process with the 1 kDa MWCO UF membrane yielded the best water quality that falls within the US EPA reuse standard for boiler-feed and cooling water. It was also observed that the permeate quality is fit for extended reuse as process water in the cement, petroleum and coal industries. In addition, the hybrid system’s operation consumed 37.13 Wh m⁻³ of energy at the highest applied pressure of 120 kPa, which is far lesser than the typical energy requirement range (0.8–1.0 kWh m⁻³) for such wastewater reclamation.
Afficher plus [+] Moins [-]Risk element sorption/desorption characteristics of dry olive residue: a technique for the potential immobilization of risk elements in contaminated soils Texte intégral
2016
Hovorka, Miloš | Száková, Jiřina | García Sánchez, Mercedes | Acebal, Mercedes Blanc | García-Romera, Inmaculada | Tlustoš, Pavel
Olive oil production is one of the most relevant agroindustrial activities in the Mediterranean region and generates a huge amount of both solid and semi-solid wastes, the uncontrolled disposal of which might lead to serious environmental problems. Due to its organic matter and mineral nutrient content, the waste material can be applied to agricultural soil as a fertilizer. However, due to its high organic matter content, dry olive residue (DOR), commonly called “alperujo,” has the potential to immobilize risk elements in contaminated soils. The main objective of this study was to assess the possible effect of DOR on sorption of risk elements such as cadmium (Cd), lead (Pb), and zinc (Zn) in the soil. A set of batch sorption experiments were carried out to assess the ability of DOR to adsorb Cd, Pb, and Zn where the effect of the preceding biotransformation of DOR by four species of fungi: Penicillium chrysogenum, Coriolopsis floccosa, Bjerkhandera adusta, and Chondrostereum purpureum was compared. The Freundlich and Langmuir sorption isotherms were calculated to assess the sorption characteristics of both transformed and non-transformed DOR. The results showed good potential sorption capacity of DOR, especially for Pb and to a lesser extent for Cd and Zn. Better sorption characteristics were reported for the biotransformed DOR samples, which are expected to show higher humification of the organic matter. However, the desorption experiments showed weakness and instability of the DOR-bound elements, especially in the case of Zn. Thus, future research should aim to verify the DOR sorption pattern in contaminated soil as well as the potential stabilization of the DOR element bounds where the increase of the pH levels of the DOR samples needs to be taken into account.
Afficher plus [+] Moins [-]Estimation of plant sampling uncertainty: an example based on chemical analysis of moss samples Texte intégral
2016
Dołęgowska, Sabina
In order to estimate the level of uncertainty arising from sampling, 54 samples (primary and duplicate) of the moss species Pleurozium schreberi (Brid.) Mitt. were collected within three forested areas (Wierna Rzeka, Piaski, Posłowice Range) in the Holy Cross Mountains (south-central Poland). During the fieldwork, each primary sample composed of 8 to 10 increments (subsamples) was taken over an area of 10 m² whereas duplicate samples were collected in the same way at a distance of 1–2 m. Subsequently, all samples were triple rinsed with deionized water, dried, milled, and digested (8 mL HNO₃ (1:1) + 1 mL 30 % H₂O₂) in a closed microwave system Multiwave 3000. The prepared solutions were analyzed twice for Cu, Fe, Mn, and Zn using FAAS and GFAAS techniques. All datasets were checked for normality and for normally distributed elements (Cu from Piaski, Zn from Posłowice, Fe, Zn from Wierna Rzeka). The sampling uncertainty was computed with (i) classical ANOVA, (ii) classical RANOVA, (iii) modified RANOVA, and (iv) range statistics. For the remaining elements, the sampling uncertainty was calculated with traditional and/or modified RANOVA (if the amount of outliers did not exceed 10 %) or classical ANOVA after Box-Cox transformation (if the amount of outliers exceeded 10 %). The highest concentrations of all elements were found in moss samples from Piaski, whereas the sampling uncertainty calculated with different statistical methods ranged from 4.1 to 22 %.
Afficher plus [+] Moins [-]Assessment of arsenic in colostrum and cord serum and risk exposure to neonates from an island population in China Texte intégral
2016
Xu, Chenye | Tang, Mengling | Zhu, Siyu | Naranmandura, Hua | Liu, Weiping
Arsenic (As) has been proven to be highly toxic to humans, but limited attention has focused on exposure levels and potential risks to mother-neonate pairs of coastal populations. This study was conducted by examining the As concentration in colostrum and umbilical cord serum collected from 106 mother-neonate pairs living on Shengsi Island, facing the Yangtze River estuary and Hangzhou Bay in China. Average concentrations of total As in colostrum and cord serum were 18.51 ± 7.00 and 19.83 ± 10.50 μg L⁻¹. One-way ANOVA analysis showed delivered ages and source of drinking water played significant roles in influencing the maternal exposure patterns. Correlation analysis indicated a significantly positive association between As concentrations in colostrum and cord serum. Multivariable linear regression models adjusted for other confounders clarified the dose-response relationship with a coefficient value of 0.23 and a 95 % confidence interval of (0.006, 0.492); p < 0.05. The calculated daily intake of total As for neonates through breastfeeding was in the range from 0.413 to 3.65 μg kg⁻¹ body weight, and colostrum As, especially the most toxic species, inorganic arsenic (iAs), would pose a risk to neonates.
Afficher plus [+] Moins [-]POPs in a major conurbation in Turkey: ambient air concentrations, seasonal variation, inhalation and dermal exposure, and associated carcinogenic risks Texte intégral
2016
Ugranli, Tugba | Gungormus, Elif | Kavcar, Pınar | Demircioglu, Eylem | Odabasi, Mustafa | Sofuoglu, Sait C. | Lammel, Gerhard | Sofuoglu, Aysun
Semi-volatile organic compounds were monitored over a whole year, by collection of gas and particle phases every sixth day at a suburban site in Izmir, Turkey. Annual mean concentrations of 32 polychlorinated biphenyls (∑₃₂PCBs) and 14 polycyclic aromatic hydrocarbons (∑₁₄PAHs) were 348 pg/m³ and 36 ng/m³, respectively, while it was 273 pg/m³ for endosulfan, the dominant compound among 23 organochlorine pesticides (OCPs). Monte Carlo simulation was applied to the USEPA exposure-risk models for the estimation of the population exposure and carcinogenic risk probability distributions for heating and non-heating periods. The estimated population risks associated with dermal contact and inhalation routes to ∑₃₂PCBs, ∑₁₄PAHs, and some of the targeted OCPs (α-hexachlorocyclohexane (α-HCH), β-hexachlorocyclohexane (β-HCH), heptachlor, heptachlor epoxide, α-chlordane (α-CHL), γ-chlordane (γ-CHL), and p,p′-dichlorodiphenyltrichloroethane (p,p′-DDT)) were in the ranges of 1.86 × 10⁻¹⁶–7.29 × 10⁻⁹ and 1.38 × 10⁻¹⁰–4.07 × 10⁻⁶, respectively. The inhalation 95th percentile risks for ∑₃₂PCBs, ∑₁₄PAHs, and OCPs were about 6, 3, and 4–7 orders of magnitude higher than those of dermal route, respectively. The 95th percentile inhalation risk for ∑₃₂PCBs and OCPs in the non-heating period were 1.8- and 1.2–4.6 folds higher than in the heating period, respectively. In contrast, the 95th percentile risk levels for ∑₁₄PAHs in the heating period were 4.3 times greater than that of non-heating period for inhalation, respectively. While risk levels associated with exposure to PCBs and OCPs did not exceed the acceptable level of 1 × 10⁻⁶, it was exceeded for 47 % of the population associated with inhalation of PAHs with a maximum value of about 4 × 10⁻⁶.
Afficher plus [+] Moins [-]Geophysical, isotopic, and hydrogeochemical tools to identify potential impacts on coastal groundwater resources from Urmia hypersaline Lake, NW Iran Texte intégral
2016
Amiri, Vahab | Nakhaei, Mohammad | Lak, Razyeh | Kholghi, Majid
Measurements of major ions, trace elements, water-stable isotopes, and geophysical soundings were made to examine the interaction between Urmia Aquifer (UA) and Urmia Lake (UL), northwest Iran. The poor correlation between sampling depth and Cl⁻ concentrations indicated that the position of freshwater-saltwater interface is not uniformly distributed in the study area, and this was attributed to aquifer heterogeneities. The targeted coastal wells showed B/Cl and Br/Cl molar ratios in the range of 0.0022–2.43 and 0.00032–0.28, respectively. The base-exchange index (BEI) and saturation index (SI) calculations showed that the salinization process followed by cation-exchange reactions mainly controls changes in the chemical composition of groundwater. All groundwater samples are depleted with respect to δ¹⁸O (−11.71 to −9.4 ‰) and δD (−66.26 to −48.41 ‰). The δ¹⁸O and δD isotope ratios for surface and groundwater had a similar range and showed high deuterium excess (d-excess) (21.11 to 31.16 ‰). The high d-excess in water samples is because of incoming vapors from the UL mixed with an evaporated moisture flux from the Urmia mainland and incoming vapors from the west (i.e., Mediterranean Sea). Some saline samples with low B/Cl and Br/Cl ratios had depleted δ¹⁸O and δD. In this case, due to freshwater flushing, the drilled wells in the coastal playas and salty sediments could have more depleted isotopes, more Cl⁻, and consequently smaller B/Cl and Br/Cl ratios. Moreover, the results of hydrochemical facies evolution (HFE) diagram showed that because of the existence fine-grained sediments saturated with high density saltwater in the coastal areas that act as a natural barrier, increasing the groundwater exploitation leads to movement of freshwaters from recharge zones in the western mountains not saltwater from UL. The highly permeable sediments at the junction of the rivers to the lake are characterized by low hydraulic gradient and high hydraulic conductivity. These properties enhance the salinization of groundwater observed in the study area. The main factors influencing the salinity are base-exchange reactions, invasion of highly diluted saltwater, dissolution of salty pans, and water chemistry evolution along flow paths.
Afficher plus [+] Moins [-]Spatial-temporal variations of phosphorus fractions in surface water and suspended particles in the Daliao River Estuary, Northeast China Texte intégral
2016
Zhang, Lei | Qin, Yanwen | Han, Chaonan | Cao, Wei | Ma, Yingqun | Shi, Yao | Liu, Zhichao | Yang, Chenchen
The transport and storage of phosphorus in estuary is a complex biogeochemical process as the result of the convergence of fresh and saline water. The objective of the current study is to investigate the spatial-temporal variations of phosphorus fractions in surface water and suspended particles of Daliao River Estuary, China. Samples were collected in August (wet season) and November (dry season), 2013. The results showed that total particulate phosphorus (TPP) in water accounted for more than 50 % of the total phosphorus (TP). Meanwhile, in suspended particles, more than 62 % of particulate phosphorus was in the form of bioavailable phosphorus, including exchangeable phosphorus (Exc-P), extractable organic phosphorus (Exo-P), and iron-bound phosphorus (Fe-P), which meant that the potential impacts of bioavailable phosphorus in suspended particles on estuarine water environment cannot be ignored. There were significantly seasonal variations of phosphorus fractions in the Daliao River Estuary. The concentrations of phosphorus fractions in water in wet season were much lower than that in dry season because of the dilution effect of larger rainfall in wet season. In addition, spatial distribution characteristics of phosphorus fractions were also obvious. Due to terrigenous phosphorus input from the upstream of tidal reach and seawater dilution effect in coastal estuary, total dissolved phosphorus (TDP) concentrations in water gradually decreased from tidal reach to coastal estuary. However, the concentrations of TPP and TP in water and Exo-P in suspended particles presented spatial fluctuation, and these were greatly attributed to sediment re-suspension in coastal estuary.
Afficher plus [+] Moins [-]Characteristic oxidation behavior of β-cyclocitral from the cyanobacterium Microcystis Texte intégral
2016
Tomita, Koji | Hasegawa, Masateru | Arii, Suzue | Tsuji, Kiyomi | Bober, Beata | Harada, Ken-ichi
The cyanobacterium Microcystis produces volatile organic compounds such as β-cyclocitral and 3-methyl-1-butanol. The lysis of cyanobacteria involving the blue color formation has been occasionally observed in a natural environment. In this study, we focused on the oxidation behavior of β-cyclocitral that contributed to the blue color formation in a natural environment and compared β-cyclocitral with a structurally related compound concerning its oxidation, acidification, and lytic behavior. The oxidation products of β-cyclocitral were identified by the addition of β-cyclocitral in water, in which 2,2,6-trimethylcyclohex-1-ene-1-yl formate and 2,2,6-trimethylcyclohexanone were structurally characterized. That is, β-cyclocitral was easily oxidized to produce the corresponding carboxylic acid and the enol ester in water without an oxidizing reagent, suggesting that this oxidation proceeded according to the Baeyer-Villiger oxidation. The oxidation behavior of β-cyclocitral in a laboratory was different from that in the natural environment, in which 2,2,6- trimethylcyclohexanone was detected at the highest amount in the natural environment, whereas the highest amount in the laboratory was β-cyclocitric acid. A comparison of β-cyclocitral with structurally similar aldehydes concerning the lytic behavior of a Microcystis strain and the acidification process indicated that only β-cyclocitral was easily oxidized. Furthermore, it was found that a blue color formation occurred between pH 5.5 and 6.5, suggesting that chlorophyll a and β-carotene are unstable and decomposed, whereas phycocyanin was stable to some extent in this range. The obtained results of the characteristic oxidation behavior of β-cyclocitral would contribute to a better understanding of the cyanobacterial life cycle.
Afficher plus [+] Moins [-]Supervised neural computing solutions for fluorescence identification of benzimidazole fungicides. Data and decision fusion strategies Texte intégral
2016
Suárez Araujo, Carmen Paz | García Báez, Patricio | Sánchez Rodríguez, Álvaro | Santana-Rodrríguez, José Juan
Benzimidazole fungicides (BFs) are a type of pesticide of high environmental interest characterized by a heavy fluorescence spectral overlap which complicates its detection in mixtures. In this paper, we present a computational study based on supervised neural networks for a multi-label classification problem. Specifically, backpropagation networks (BPNs) with data fusion and ensemble schemes are used for the simultaneous resolution of difficult multi-fungicide mixtures. We designed, optimized and compared simple BPNs, BPNs with data fusion and BPNs ensembles. The information environment used is made up of synchronous and conventional BF fluorescence spectra. The mixture spectra are not used in the training nor the validation stage. This study allows us to determine the convenience of fusioning the labels of carbendazim and benomyl for the identification of BFs in complex multi-fungicide mixtures.
Afficher plus [+] Moins [-]