Affiner votre recherche
Résultats 3821-3830 de 62,595
Systematic identification of microplastics in abyssal and hadal sediments of the Kuril Kamchatka trench Texte intégral
2021
Abel, Serena M. | Primpke, Sebastian | Int-Veen, Ivo | Brandt, Angelika | Gerdts, Gunnar
The occurrence of microplastics throughout marine environments worldwide, from pelagic to benthic habitats, has become serious cause for concern. Hadal zones were recently described as the “trash bins of the oceans” and ultimate sink for marine plastic debris. The Kuril region covers a substantial area of the North Pacific Ocean and is characterised by high biological productivity, intense marine traffic through the Kuril straits, and anthropogenic activity. Moreover, strong tidal currents and eddy activity, as well as the influence of Pacific currents, have the potential for long distance transport and retention of microplastics in this area. To verify the hypothesis that the underlying Kuril Kamchatka Trench might accumulate microplastics from the surrounding environments and act as the final sink for high quantities of microplastics, we analysed eight sediment samples collected in the Kuril Kamchatka Trench at a depth range of 5143–8250 m during the Kuril Kamchatka Biodiversity Studies II (KuramBio II) expedition in summer 2016. Microplastics were characterised via Micro Fourier Transform Infrared spectroscopy. All samples were analysed in their entirety to avoid inaccuracies due to extrapolations of microplastic concentrations and polymer diversities, which would otherwise be based on commonly applied representative aliquots. The number of microplastic particles detected ranged from 14 to 209 kg⁻¹ sediment (dry weight) with a total of 15 different plastic polymers detected. Polypropylene accounted for the largest proportion (33.2%), followed by acrylates/polyurethane/varnish (19%) and oxidized polypropylene (17.4%). By comparing extrapolated sample aliquots with in toto results, it was shown that aliquot-based extrapolations lead to severe under- or overestimations of microplastic concentrations, and an underestimation of polymer diversity.
Afficher plus [+] Moins [-]The effect of earthworms on plant response in metal contaminated soil focusing on belowground-aboveground relationships Texte intégral
2021
Contaminated soils are lands in Europe deemed less favourable for conventional agriculture. To overcome the problem of their poor fertility, bio-fertilization could be a promising approach. Soil inoculation with a choice of biological species (e.g. earthworm, mycorrhizal fungi, diazotroph bacteria) can be performed in order to improve soil properties and promote nutrients recycling. However, questions arise concerning the dynamics of the contaminants in an inoculated soil.The aim of this study was to highlight the soil-plant-earthworm interactions in the case of a slightly contaminated soil. For this purpose, a pot experiment in controlled conditions was carried out during 2 months with a Cd, Zn, and Cu contaminated sandy soil, including conditions with or without earthworms (Aporrectodea caliginosa) and with or without plants (Lolium perenne).The three components of the trace element bioavailability were studied to understand the belowground-aboveground relationships and were quantified as followed: i) environmental availability in soils by measuring trace element concentrations in soil solution, ii) environmental bioavailability for organisms by measuring trace element concentrations in depurated whole earthworms bodies and in the plant aerial biomass, and iii) toxicological bioavailability, by measuring survival rate and body weight changes for earthworms and biomass for plants. The results showed that earthworm inoculation increased the content of all studied TE in soil solution. Moreover, lower concentrations of Cd and Zn were found in plants in the presence of earthworms while the bioavailability decreased when compared to the condition without plants. The trace element bioaccumulation in earthworms did not produce a direct toxicity, according to the earthworm survival rate and body weight results.Finally, our pot experiment confirmed that even in contaminated soils, the presence of A. caliginosa promotes plant adaptation and improves biomass production, reducing trace element uptake.
Afficher plus [+] Moins [-]Untangling causes of variation in mercury concentration between flight feathers Texte intégral
2021
Gatt, Marie Claire | Furtado, Ricardo | Granadeiro, José Pedro | Lopes, Daniel | Pereira, Eduarda | Catry, Paulo
Bird feathers are one of the most widely used animal tissue in mercury biomonitoring, owing to the ease of collection and storage. They are also the principal excretory pathway of mercury in birds. However, limitations in our understanding of the physiology of mercury deposition in feathers has placed doubt on the interpretation of feather mercury concentratoins. Throughout the literature, moult sequence and the depletion of the body mercury pool have been taken to explain patterns such as the decrease in feather mercury from the innermost (P1) to the outermost primary feather (P10) of the wing. However, it has been suggested that this pattern is rather a measurement artefact as a result of the increased feather mass to length ratio along the primaries, resulting in a dilution effect in heavier feathers. Here, we attempt to untangle the causes of variation in feather mercury concentrations by quantifying the mercury concentration as μg of mercury (i) per gram of feather, (ii) per millimetre of feather, and (iii) per day of feather growth in the primary feathers of Bulwer’s Petrel Bulweria bulwerii chicks, effectively controlling for some of the axes of variation that may be acting in adults, and monitoring the growth rate of primary feathers in chicks. The mercury concentration in Bulwer’s Petrel chicks’ primaries increased from the innermost to the outermost primary for all three concentration measures, following the order of feather emergence. These observations confirm that the pattern of mercury concentration across primary feathers is not an artefact of the measure of concentration, but is likely an effect of the order of feather growth, whereby the earlier grown feathers are exposed to higher blood mercury concentrations than are later moulted feathers as a result of blood mercury depletion.
Afficher plus [+] Moins [-]Microplastics accumulate to thin layers in the stratified Baltic Sea Texte intégral
2021
Uurasjärvi, Emilia | Pääkkönen, Minna | Setälä, Outi | Koistinen, Arto | Lehtiniemi, Maiju
In the Baltic Sea, water is stratified due to differences in density and salinity. The stratification prevents water from mixing, which could affect sinking rates of microplastics in the sea. We studied the accumulation of microplastics to halocline and thermocline. We sampled water with a 100 μm plankton net from vertical transects between halo- and thermocline, and a 30 L water sampler from the end of halocline and the beginning of thermocline. Thereafter, microplastics in the whole sample volumes were analyzed with imaging Fourier transform infrared spectroscopy (FTIR). The plankton net results showed that water column between halo- and thermoclines contained on average 0.92 ± 0.61 MP m⁻³ (237 ± 277 ng/m⁻³; mean ± SD), whereas the 30 L samples from the end of halocline and the beginning of thermocline contained 0.44 ± 0.52 MP L⁻¹ (106 ± 209 ng L⁻¹). Hence, microplastics are likely to accumulate to thin layers in the halocline and thermocline. The vast majority of the found microplastics were polyethylene, polypropylene and polyethylene terephthalate, which are common plastic types. We did not observe any trend between the density of microplastics and the sampling depth, probably because biofilm formation affected the sinking rates of the particles. Our results indicate the need to sample deeper water layers in addition to surface waters at least in the stratified water bodies to obtain a comprehensive overview of the abundance of microplastics in the aquatic environment.
Afficher plus [+] Moins [-]Effects of the antineoplastic drug cyclophosphamide on the biochemical responses of the mussel Mytilus galloprovincialis under different temperatures Texte intégral
2021
Queirós, Vanessa | Azeiteiro, Ulisses M. | Barata, Carlos | Santos, Juan Luis | Alonso, Esteban | Soares, Amadeu M.V.M. | Freitas, Rosa
Cyclophosphamide (CP) is an antineoplastic drug widely used in chemotherapy treatments with high consumption rates and that has been detected in the aquatic environment. After being released into the aquatic environment, CP may cause adverse effects on aquatic organisms since antineoplastics are well-known cytotoxic, genotoxic, mutagenic and teratogenic drugs. Moreover, predicted environmental changes, such as the temperature rising, may alter the impacts caused by CP on organisms. Thus, the present study aimed to assess the effects caused by CP chronic exposure in the mussel Mytilus galloprovincialis, under actual and predicted warming scenarios. Organisms were exposed for 28 days to different concentrations of CP (10, 100, 500 and 1000 ng/L) at control (17 ± 1.0 °C) and increased (21 ± 1.0 °C) temperatures. Biochemical responses related to metabolic capacity, energy reserves, oxidative stress and neurotoxicity were assessed. The results showed that the organisms were able to maintain their metabolic capacity under all exposure conditions. However, their antioxidant defense mechanisms were activated mostly at higher CP concentrations being able to prevent cellular damage, even under the warming scenario. Overall, the present findings suggest that temperature rise may not alter the impacts of CP towards M. galloprovincialis.
Afficher plus [+] Moins [-]Early life multiple exposures and child cognitive function: A multi-centric birth cohort study in six European countries Texte intégral
2021
Julvez, Jordi | López-Vicente, Mónica | Warembourg, Charline | Maitre, Lea | Philippat, Claire | Gützkow, Kristine B. | Guxens, Monica | Evandt, Jorunn | Andrusaityte, Sandra | Burgaleta, Miguel | Casas, Maribel | Chatzi, Leda | de Castro, Montserrat | Donaire-González, David | Gražulevičienė, Regina | Hernandez-Ferrer, Carles | Heude, Barbara | Mceachan, Rosie | Mon-Williams, Mark | Nieuwenhuijsen, Mark | Robinson, Oliver | Sakhi, Amrit K. | Sebastián-Gallés, Núria | Slama, Remy | Sunyer, Jordi | Tamayo-Uria, Ibon | Thomsen, Cathrine | Urquiza, José | Vafeiadi, Marina | Wright, John | Basagaña, Xavier | Vrijheid, Martine
Epidemiological studies mostly focus on single environmental exposures. This study aims to systematically assess associations between a wide range of prenatal and childhood environmental exposures and cognition. The study sample included data of 1298 mother-child pairs, children were 6–11 years-old, from six European birth cohorts. We measured 87 exposures during pregnancy and 122 cross-sectionally during childhood, including air pollution, built environment, meteorology, natural spaces, traffic, noise, chemicals and life styles. The measured cognitive domains were fluid intelligence (Raven's Coloured Progressive Matrices test, CPM), attention (Attention Network Test, ANT) and working memory (N-Back task). We used two statistical approaches to assess associations between exposure and child cognition: the exposome-wide association study (ExWAS) considering each exposure independently, and the deletion-substitution-addition algorithm (DSA) considering all exposures simultaneously to build a final multiexposure model. Based on this multiexposure model that included the exposure variables selected by ExWAS and DSA models, child organic food intake was associated with higher fluid intelligence (CPM) scores (beta = 1.18; 95% CI = 0.50, 1.87) and higher working memory (N-Back) scores (0.23; 0.05, 0.41), and child fast food intake (−1.25; −2.10, −0.40), house crowding (−0.39; −0.62, −0.16), and child environmental tobacco smoke (ETS) (−0.89; −1.42, −0.35), were all associated with lower CPM scores. Indoor PM₂.₅ exposure was associated with lower N-Back scores (−0.09; −0.16, −0.02). Additional associations in the unexpected direction were found: Higher prenatal mercury levels, maternal alcohol consumption and child higher perfluorooctane sulfonic acid (PFOS) levels were associated with better cognitive performance; and higher green exposure during pregnancy with lower cognitive performance. This first comprehensive and systematic study of many prenatal and childhood environmental risk factors suggests that unfavourable child nutrition, family crowdedness and child indoor air pollution and ETS exposures adversely and cross-sectionally associate with cognitive function. Unexpected associations were also observed and maybe due to confounding and reverse causality.
Afficher plus [+] Moins [-]Effects of ozone stress on flowering phenology, plant-pollinator interactions and plant reproductive success Texte intégral
2021
Duque, Laura | Poelman, Erik H. | Steffan-Dewenter, Ingolf
Tropospheric ozone is a highly oxidative pollutant with the potential to alter plant metabolism. The direct effects of ozone on plant phenotype may alter interactions with other organisms, such as pollinators, and, consequently, affect plant reproductive success. In a set of greenhouse experiments, we tested whether exposure of plants to a high level of ozone affected their phenological development, their attractiveness to four different pollinators (mason bees, honeybees, hoverflies and bumblebees) and, ultimately, their reproductive success. Exposure of plants to ozone accelerated flowering, particularly on plants that were growing in autumn, when light and temperature cues, that commonly promote flowering, were weaker. Simultaneously, there was a tendency for ozone-exposed plants to disinvest in vegetative growth. Plant exposure to ozone did not substantially affect pollinator preference, but bumblebees had a tendency to visit more flowers on ozone-exposed plants, an effect that was driven by the fact that these plants tended to have more open flowers, meaning a stronger attraction signal. Honeybees spent more time per flower on ozone-exposed plants than on control plants. Acceleration of flower production and the behavioural responses of pollinators to ozone-exposed plants resulted in retained reproductive fitness of plants pollinated by bumblebees, honeybees and mason bees, despite the negative effects of ozone on plant growth. Plants that were pollinated by hoverflies had a reduction in reproductive fitness in response to ozone. In a natural setting, acceleration of flowering by ozone might foster desynchronization between plant and pollinator activities. This can have a strong impact on plants with short flowering periods and on plants that, unlike wild mustard, lack compensatory mechanisms to cope with the absence of pollinator activity in the beginning of flowering.
Afficher plus [+] Moins [-]Agricultural activities compromise ecosystem health and functioning of rivers: Insights from multivariate and multimetric analyses of macroinvertebrate assemblages Texte intégral
2021
Zhang, You | Leung, Jonathan Y.S. | Zhang, Ying | Cai, Yongjiu | Zhang, Zhiming | Li, Kuanyi
Agricultural activities often lead to nutrient enrichment and habitat modification in rivers, possibly altering macroinvertebrate assemblages and hence ecosystem functioning. For the sake of environmental management and conservation, therefore, assessing the impacts of agricultural activities becomes indispensable, especially when these activities are predicted to be intensified in the future. In this study, the plain river network in the Lake Chaohu Basin was chosen to examine how agricultural activities influence the functioning of rivers by assessing land use, water quality, habitat condition and macroinvertebrate assemblages, followed by calculating the macroinvertebrate-based multimetric index (MMI) to indicate overall ecosystem health of the rivers. We found that agricultural activities lowered the diversity of macroinvertebrates (e.g. total number of taxa and Simpson index) primarily due to elevated ammonium concentrations in water and reduced microhabitat types, thereby impairing the habitat integrity and nutrient cycling of rivers. The macroinvertebrate-based MMI was positively correlated with increasing habitat quality but negatively with increasing nutrient concentrations, suggesting its high reliability for indicating the impacts of agricultural activities, which was further substantiated by classification and regression tree (CART) analysis. We recommend analyzing macroinvertebrate assemblages using both multivariate and multimetric approaches to offer a more comprehensive evaluation of the impacts of agricultural activities on ecosystem health. Some environmental (CODMₙ, NH₄⁺-N and PO₄³⁻-P) and biological parameters (total number of taxa), however, can be used as good proxies for MMI, when time and resources for gathering information to develop MMI are limited.
Afficher plus [+] Moins [-]Rapid temporal decline of mercury in Greenland halibut (Reinhardtius hippoglossoides) Texte intégral
2021
Bank, Michael S. | Frantzen, Sylvia | Duinker, Arne | Amouroux, David | Tessier, Emmanuel | Nedreaas, Kjell | Maage, Amund | Nilsen, Bente M.
Mercury (Hg) pollution in the ocean is an issue of global concern, however bioaccumulation regimes of this ubiquitous pollutant in marine apex predators have important knowledge gaps. Our fish length and stable isotope (δ¹⁵N and δ¹³C) normalized data of Greenland halibut (GH) (Reinhardtius hippoglossoides) showed that Hg bioaccumulation in fillet tissue decreased by ~35–50 %, over a ten-year period from 2006 to 2015 (n = 7 individual sampling years). Hg was predominantly in the methylmercury form (>77 %). Results from a Bayesian information theoretic model showed that GH Hg concentrations decreased with time and its associated declines in Hg air emissions, estimated trophic position, and a potentially lower degree of demersal prey use as indicated by temporal trend shifts in nitrogen (δ¹⁵N) and carbon (δ¹³C) stable isotope values. GH trophic shifts accounted for about one third of the observed temporal reduction in Hg. Our study demonstrates the importance of simultaneously considering Hg emissions, food web dynamics and trophic shifts as important drivers of Hg bioaccumulation in a marine, deep water fish species and highlights the effectiveness of Hg regulations on ocean apex predator Hg concentrations and overall seafood safety.
Afficher plus [+] Moins [-]Sustainable ferrate oxidation: Reaction chemistry, mechanisms and removal of pollutants in wastewater Texte intégral
2021
Dar, Afzal Ahmed | Pan, Bao | Qin, Jiani | Zhu, Qiuhui | Lichtfouse, Eric | ʻUs̲mān, Muḥammad | Wang, Chuanyi
This review is intended to evaluate the use of ferrate (Fe(VI)), being a green coagulant, sustainable and reactive oxidant, to remove micro pollutants especially pharmaceutical pollutants in contaminated water. After a brief description of advanced oxidation processes, fundamental dimensions regarding the nature, reactivity, and chemistry of this oxidant are summarized. The degradation of contaminants by Fe(VI) involves several mechanisms and reactive agents which are critically evaluated. The efficiency and chemistry of Fe(VI) oxidation differs according to the reaction conditions and activation agent, such as soluble Fe(VI) processes, which involve Fe(VI), UV light, and electro-Fe(VI) oxidation. Fe(VI) application methods (including single dose, multiple doses, chitosan coating etc), and Fe(VI) with activating agents (including sulfite, thiosulfate, and UV) are also described to degrade the micro pollutants. Besides, application of Fe(VI) to remove pharmaceuticals in wastewater are intensely studied. Electrochemical prepared Fe(VI) has more wide application than wet oxidation method. Meanwhile, we elaborated Fe(VI) performance, limitations, and proposed innovative aspects to improve its stability, such as the generation of Fe(III), synergetic effects, nanopores entrapment, and nanopores capsules. This study provides conclusive direction for synergetic oxidative technique to degrade the micro pollutants.
Afficher plus [+] Moins [-]