Affiner votre recherche
Résultats 391-400 de 7,351
Catastrophic PM2.5 emissions from Siberian forest fires: Impacting factors analysis Texte intégral
2022
Romanov, Aleksey A. | Tamarovskaya, Anastasia N. | Gusev, Boris A. | Leonenko, Egor V. | Vasiliev, Alexander S. | Krikunov, Elijah E.
With increased forest fires due to climate change, PM₂.₅ emissions also intensified. Record PM₂.₅ emissions according to Copernicus Atmosphere Monitoring Service in Russia amounted to 8 megatons (Mt) in 2021, which is 78% higher than the average level of 2004–2021 (4.5 Mt). Seven federal subjects (the constituent entities) with vast forest areas without fire protection produced 86% of emissions (6.8 Mt) in 2021, the major losses (6.1 Mt) in Yakutia (Sakha Republic). The ambient temperature in Eastern Siberia is increasing, especially in months of winter and spring seasons (up to +3.6 °C) in 1990–2020 compared to 1901–2020 (CEDA Archive); climate change has affected meteorological conditions leading to increased forest fires. The results of the SARIMAX model study for PM₂.₅ emissions considering meteorological factors using ERA5 and burnt forest area using MODIS (MCD64A1), establishing a significant dependence of PM₂.₅ emissions on the lack of precipitation and the associated parameters of complete and potential evaporation. This influence long before the fire season (up to 9 months), as it affects the snow cover and the dryness of the fuel by the beginning of forest fires. In turn, high PM₂.₅ emission values are accompanied by a drop in 2 m air temperature and surface solar radiation downwards due to the aerosol saturation with suspended particles. The average COR for seven federal subjects was 0.79, with the highest forecast result in Yakutia (0.95), indicating the maximum propensity for record emissions due to weather conditions. In combination with forest management without fire protection, meteorological parameters have caused an increase in PM₂.₅ emissions in recent years in Siberia. The forest needs other ways to manage under the pressures of climate change to reduce environmental pollution associated with PM₂.₅ emissions from vast Siberian fires.
Afficher plus [+] Moins [-]Secondary organic aerosol formation and source contributions over east China in summertime Texte intégral
2022
Li, Jie | Han, Zhiwei | Wu, Jian | Tao, Jun | Li, Jiawei | Sun, Yele | Liang, Lin | Liang, Mingjie | Wang, Qin'geng
Various precursor emissions and chemical mechanisms for secondary organic aerosol (SOA) formation were incorporated into a regional air quality model system (RAQMS) and applied to investigate the distribution, composition, and source contribution of SOA over east China in summer 2018. Model comparison against a variety of observations at a national scale demonstrated that the model was able to reasonably reproduce meteorological variables, O₃ and PM₂.₅ concentrations, and the model simulated SOA concentration generally agreed with observations, with the overall NMB of 7.0% and R of 0.4 in 10 cities over east China. The simulated period-mean SOA concentrations of 4–15 μg m⁻³ were mainly distributed over the North China Plain (NCP), the middle and lower reaches of the Yangtze River and Chongqing district. SOA dominated organic aerosol (OA) over China in summertime (90%). The percentage contributions to SOA from ASOA (SOA produced from anthropogenic volatile organic compounds (AVOC)), BSOA (SOA produced from biogenic volatile organic compounds (BVOC)), DSOA (SOA produced from aqueous uptake of glyoxal and methylglyoxal) and S/I-SOA (SOA produced from semi-volatile and intermediate volatile organic compounds) were estimated to be 48.3%, 28.6%, 14.3%, and 8.8% respectively, over east China in summertime. In terms of domain and period average, ASOA contributed most to SOA (59%) in north China, while BSOA contributed most to SOA (37.3%) in northeast China. The percentage contribution of DSOA to SOA reached 21.5% in southwest China. S/I-SOA accounted for approximately 10% of SOA in most areas of east China. This study reveals that while AVOC dominates SOA formation on average over east China, the SOA source contributions differ considerably in different regions of China. BVOC makes the same contribution to SOA formation as AVOC in northeast China and southwest China, where forest coverage and BVOC emission are higher and anthropogenic emissions are relatively low, highlighting the significant role of BVOC in summer SOA formation in China.
Afficher plus [+] Moins [-]Combined application of ferrihydrite and hydroxyapatite to immobilize soil copper, cadmium, and phosphate under flooding-drainage alternations Texte intégral
2022
Cui, Hongbiao | Bao, Binglu | Cao, Yong | Zhang, Shiwen | Shi, Jianjun | Zhou, Jing | Zhou, Jun
Hydroxyapatite (HAP) can effectively immobilize soil heavy metals, but excess phosphate would be released to aquatic ecosystem, resulting in eutrophication. This study investigated the effects of ferrihydrite (FH) on the HAP immobilization of copper (Cu) and cadmium (Cd) and their reduction of phosphorus release under flooding-drainage alternation conditions. Results showed that the incorporation of HAP and FH significantly increased soil solution pH and decreased Cu²⁺ and Cd²⁺ concentrations. Applications of FH, HAP, and FH-HAP (FH and HAP combination) can all enhance soil pH and reduce CaCl₂-extractable and exchangeable Cu and Cd, but HAP addition increased soluble phosphate by 6.60–7.77 times compared to control. However, FH-HAP application can significantly reduce phosphate release by 92.7–99.7% compared to HAP application. FH-HAP was the most effective to reduce exchangeable Cu and Cd by 49.8–93.4% and 50.9–88.8% and decreased labile and moderately labile phosphorus by 34.0–74.4% and 13.5–18.6%, respectively, while increased stable phosphorus by 22–45.1% than single HAP. All FH treatments significantly increased amorphous iron oxides by the factors of 4.66–20.8, but only 3% and 5% of FH applications slightly enhanced crystal iron oxides by the factors of 0.81–1.27. The major implication is that the combination of FH and HAP can not only immobilize of Cu and Cd, but also reduce the risk of phosphate release by HAP addition.
Afficher plus [+] Moins [-]Biochar significantly reduced fumigant emissions and benefited germination and plant growth under field conditions Texte intégral
2022
Wang, Qiuxia | Gao, Suduan | Wang, Dong | Cao, Aocheng
Soil fumigation continues to play an important role in soil disinfection, but tools to significantly reduce emissions while providing environmental benefits (e.g., biochar) are lacking. The objective of this study was to determine the effects of biochar products on fumigant 1,3-dichloropropene (1,3-D) and chloropicrin (CP) emissions, their distribution and persistence in soil, nematode control, and potential toxicity to plants in a field trial. Treatments included three biochar products [two derived from almond shells (ASB) at either 550 or 900 °C pyrolysis temperature and one from coconut shells (CSB) at 550 °C] at 30 and 60 t ha⁻¹, a surface covering with a low permeability film (TIF), and no surface covering (control). A mixture of 1,3-D (∼65%) and CP (∼35%) was injected to ∼60 cm soil depth at a combined rate of 640 kg ha⁻¹. All biochar treatments significantly reduced emissions by 38–100% compared to the control. The ASB (900 °C) at both rates reduced emissions as effectively as the TIF (by 99–100%). Both fumigant emission reduction and residue in surface soil were positively correlated with biochar's adsorption capacity while cucumber germination rate and dry biomass were negatively correlated with residual fumigant concentrations in surface soil. This research demonstrated the potential and benefits of using biochar produced from local orchard feedstocks to control fumigant emissions. Additional research is needed to maximize the benefits of biochar on fumigant emission reductions without impacting plant growth.
Afficher plus [+] Moins [-]Decisive role of ozone formation control in winter PM2.5 mitigation in Shenzhen, China Texte intégral
2022
Tang, Meng-Xue | Huang, Xiao Feng | Sun, Tian-Le | Cheng, Yong | Luo, Yao | Chen, Zheng | Lin, Xiao-Yu | Cao, Li-Ming | Zhai, Yu-Hong | He, Ling-Yan
During the COVID-19 lockdown, atmospheric PM₂.₅ in the Pearl River Delta (PRD) showed the highest reduction in China, but the reasons, being a critical question for future air quality policy design, are not yet clear. In this study, we analyzed the relationships among gaseous precursors, secondary aerosols and atmospheric oxidation capacity in Shenzhen, a megacity in the PRD, during the lockdown period in 2020 and the same period in 2021. The comprehensive observational datasets showed large lockdown declines in all primary and secondary pollutants (including O₃). We found that, however, the daytime concentrations of secondary aerosols during the lockdown period and normal period were rather similar when the corresponding odd oxygen (Oₓ≡O₃+NO₂, an indicator of photochemical processing avoiding the titration effect of O₃ by freshly emitted NO) were at similar levels. Therefore, reduced Oₓ, rather than the large reduction in precursors, was a direct driver to achieve the decline in secondary aerosols. Moreover, Oₓ was also found to determine the spatial distribution of intercity PM₂.₅ levels in winter PRD. Thus, an effective strategy for winter PM₂.₅ mitigation should emphasize on control of winter O₃ formation in the PRD and other regions with similar conditions.
Afficher plus [+] Moins [-]Behavior and fate of microcystin-LR in soils amended with biochar and peat Texte intégral
2022
Cao, Qing | You, Bensheng | Yao, Lei | Liu, Weijing | Zheng, Zhen | Zhu, Bingqing | Xie, Liqiang
Activities such as irrigation with cyanobacteria-polluted water can lead to microcystins (MCs) migration from soil surface to the deeper layers, which could pose a potential risk to ground drinking water safety. The present study evaluated the sorption, degradation and leaching behavior of microcystin-LR (MC-LR) in two different soils amended with biochar and peat. Results showed that both biochar and peat could significantly increase MC-LR sorption in both soils. The Freundlich unit capacity coefficient (Kf) of 2% biochar treatment were 2–3 times higher than those of the control treatment. Amendment of 2% peat greatly boosted the biodegradation of MC-LR, whereas amendment of 2% biochar significantly reduced the biodegradation of MC-LR in both soils. The half-lives of MC-LR were 4.99 d (Control), 5.59 d (2% Biochar) and 3.50 d (2% Peat) in soil A and 6.66 d (Control), 6.93 d (2% Biochar) and 5.13 d (2% Peat) in soil B, respectively. All the amendments, except treatment 1% Peat, could significantly reduce the recovery rates of MC-LR in the leachate of columns with both soils. Amendment of 2% biochar and 2% peat reduced the recovery rates of MC-LR by 15.87% and 8.6% in soil A and 18.4% and 10.3% in soil B, compared with the controls. This work provides a better understanding of the environmental behavior of MC-LR in soils with different amendments, which is also meaningful for groundwater protection in cyanobacterial-polluted areas.
Afficher plus [+] Moins [-]Organophosphate esters in surface waters of Shandong Peninsula in eastern China: Levels, profile, source, spatial distribution, and partitioning Texte intégral
2022
Lian, Maoshan | Lin, Chunye | Xin, Ming | Gu, Xiang | Lü Shuang, | Wang, Baodong | Ouyang, Wei | Liu, Xitao | He, Mengchang
Organophosphate ester (OPE) levels, profiles, sources, spatial distribution, and partitioning were firstly studied in the rivers of the Shandong Peninsula. A total of 53 water samples and 45 sediment samples were collected from the rivers and the sewage treatment plant in the peninsula to quantitate levels of 13 targeted OPEs. Total OPE concentrations ranged from 263 to 6676 ng L⁻¹ in the water, and 39.3–360 ng g⁻¹ in the sediment. TEP, TCPP, and TCEP together contributed more than 90% of total OPE content. TCEP and TCPP concentrations in the Xiaoqing River sediment were increased by approximately two and seven times from 2014 to 2019, respectively. Total OPE concentrations generally increased from upstream regions to the estuaries. The main OPE sources were municipal effluent in the Jiaozhou Bay (JZB) watershed and chemical industrial wastewater in the Laizhou Bay (LZB) watershed. TCPP, TEP, and TCEP were generally approaching equilibrium between sediment and overlying water, while TNBP, TIBP, and TBOEP effectively transferred from the overlying water to the sediment. The riverine OPE flux was 0.66 ton/year to JZB and 3.58 ton/year to the LZB. TCPP and TCEP in municipal effluent, and TEP in chemical industrial wastewater should be regulated to protect Shandong Peninsula waters.
Afficher plus [+] Moins [-]Occurrence of azole and strobilurin fungicides in indoor dust from three cities of China Texte intégral
2022
Liu, Juan | Wan, Yanjian | Jiang, Ying | Xia, Wei | He, Zhenyu | Xu, Shunqing
Widespread use of fungicides has raised the concern of exposure to them among the general population. However, there are extremely limited studies reporting the occurrence of fungicides in indoor dust in China. This study aimed to determine ten agricultural fungicides in indoor dust samples collected in three cities of China from 2016 to 2019, assess spatial and seasonal variations, and estimate the related exposure via dust ingestion. Six out of ten fungicides including difenoconazole, prochloraz, tebuconazole, tricyclazole, azoxystrobin, and pyraclostrobin were frequently detected in the dust samples (ranged 65.8–97.7%) and the concentrations of some fungicides showed a strong correlation with each other. Difenoconazole was the most abundant one among the selected fungicides. The highest level of the selected fungicides was observed in the indoor dust collected from Wuhan in summer 2019 (median cumulative concentration of the fungicides: 62.6 ng/g), while the relatively low concentrations of fungicides were found in the dust from Taiyuan (2.08 ng/g). Heavier fungicide contamination was observed in urban districts compared to that in rural districts. Seasonal variations in the fungicide residuals were also identified. The exposure assessment suggested that intake of the selected fungicides via dust ingestion was much lower than dietary intake reported in other studies. This study filled the data gap of fungicide residuals in the indoor dust in China and further studies are needed to identify the sources and determinants of indoor fungicide contamination.
Afficher plus [+] Moins [-]Nitrate fate and decadal shift impacted by land use change in a rural karst basin as revealed by dual nitrate isotopes Texte intégral
2022
Chang, Longran | Ming, Xiaoxing | Groves, Chris | Ham, Brian | Wei, Chaofu | Yang, Pingheng
Nitrate pollution in oxygenated karst aquifers is common due to nitrification and anthropogenic inputs. However, the shift of nitrogen sources influenced by enhanced rural tourism activities and land use changes are not well understood. In this study, hydrochemistry and dual nitrate isotopes of water samples from a rural karst basin in Chongqing, southwestern China were employed to investigate the nitrate fate and its decadal change during the periods from 2007–2008 and 2017–2019. The results showed that δ¹⁵N–NO₃ and δ¹⁸O–NO₃ values at the groundwater basin resurgence averaged 9 ± 3.4‰ and 2.5 ± 3.4‰, respectively, with a mean NO₃⁻ concentration of 19.7 ± 5.4 mg/L in 2017–2019, clearly exceeding natural background levels. The dual isotope results suggested that nitrification occurred at the sampled sites. From 2007–2008 to 2017–2019, the mean δ¹⁵N–NO₃ values from the primary sink point and the resurgence of the underground river water samples increased from −0.2 ± 2.1 to 11.2 ± 4.8‰, 4.2 ± 0.9 to 9.0 ± 3.4‰, respectively. A Bayesian mixing model in R (MixSIAR) based on the isotopes revealed that soil organic nitrogen, and manure and sewage proportions for the groundwater increased by 34% and 23%, respectively, while chemical fertilizer and atmospheric precipitation proportions decreased by 32% and 25%, respectively. These decadal changes resulted from reforestation practices and enhanced rural tourism activities in the basin, which were evidenced by the change of land use patterns. The elevated nitrogen load from the rapid development of rural tourism is likely to increase this contamination in the near future if the infrastructure cannot meet the demands. The results from this study could contribute to minimizing environmental health risks in drinking water when rural tourism activities are increasing.
Afficher plus [+] Moins [-]Partitioning and (im)mobilization of arsenic associated with iron in arsenic-bearing deep subsoil profiles from Hong Kong Texte intégral
2022
Cui, Jin-li | Yang, Jinsu | Zhao, Yanping | Chan, Tingshan | Xiao, Tangfu | Tsang, Daniel C.W. | Li, Xiangdong
Understanding the arsenic (As) enrichment mechanisms in the subsurface environment relies on a systematic investigation of As valence species and their partitioning with the Fe (oxyhydr)oxide phases in the subsoil profile. The present study explored the distribution, speciation, partitioning, and (im)mobilization of As associated with Fe in four subsoil cores (∼30 m depth) from Hong Kong using sequential chemical extraction and X-ray absorption near edge spectroscopy. The subsoil profiles exhibited relatively high concentrations of As at 26.1–982 mg/kg (median of 112 mg/kg), and the As was dominated by As(V) (85–96%) and primarily associated with the residual fraction (50.7–94.7%). A small amount of As (0.002–13.2 mg/kg) was easily mobilized from the four subsoil profiles, and a concentration of water-soluble As higher than 100 μg/L was observed for only some subsoil layers. The molar ratios of As:Fe in the oxalate-extractable Fe fraction ranged from 1.2 to 76.5 mmol/mol (median of 11.1 mmol/mol), revealing the participation of poorly crystalline Fe (oxyhydr)oxides in immobilizing most of the high geogenic As. The primary phases of ferric (oxyhydr)oxides were characterized as ferrihydrite (16–53%), lepidocrocite (0–32%), and goethite (0–62%), and these phases contributed to the sufficient ability of the subsoil to sequester 45.3–100% (median of 98.8%) of the exogenous As(V) (1.0 mg/L) in adsorption experiments. In contrast to As(V), exogenous As(III) showed a lower removal percentage (3.9–79.1%, median of 45.1%). The study revealed that the chemical speciation of As and Fe in the subsoil profiles is useful for predicting the immobilization of high geogenic As in the region, which is also helpful for the safe utilization of As-containing soil during land development worldwide.
Afficher plus [+] Moins [-]