Affiner votre recherche
Résultats 3921-3930 de 4,043
Sorption of pharmaceuticals and personal care products to polyethylene debris Texte intégral
2016
Wu, Chenxi | Zhang, Kai | Huang, Xiaolong | Liu, Jiantong
Presence of plastic debris in marine and freshwater ecosystems is increasingly reported. Previous research suggested plastic debris had a strong affiliation for many pollutants, such as polycyclic aromatic hydrocarbons (PAHs), polychlorinated biphenyls (PCBs), and heavy metals. In this study, the sorption behavior of pharmaceuticals and personal care products (PPCPs), including carbamazepine (CBZ), 4-methylbenzylidene camphor (4MBC), triclosan (TCS), and 17α-ethinyl estradiol (EE2), to polyethylene (PE) debris (250 to 280 μm) was investigated. The estimated linear sorption coefficients (K d) are 191.4, 311.5, 5140, and 53,225 L/kg for CBZ, EE2, TCS, and 4MBC, and are related to their hydrophobicities. Increase of salinity from 0.05 to 3.5 % did not affect the sorption of 4MBC, CBZ, and EE2 but enhanced the sorption of TCS, likely due to the salting-out effect. Increase of dissolved organic matter (DOM) content using Aldrich humic acid (HA) as a proxy reduced the sorption of 4MBC, EE2, and TCS, all of which show a relatively strong affiliation to HA. Results from this work suggest that microplastics may play an important role in the fate and transport of PPCPs, especially for those hydrophobic ones.
Afficher plus [+] Moins [-]Sorption of perfluoroalkyl substances in sewage sludge Texte intégral
2016
Milinović, Jelena | Lacorte, Silvia | Rigol, Anna | Vidal, Miquel
The sorption behaviour of three perfluoroalkyl substances (PFASs) (perfluorooctanesulfonic acid (PFOS), perfluorooctanoic acid (PFOA) and perfluorobutanesulfonic acid (PFBS)) was studied in sewage sludge samples. Sorption isotherms were obtained by varying initial concentrations of PFOS, PFOA and PFBS. The maximum values of the sorption solid–liquid distribution coefficients (Kd,ₘₐₓ) varied by almost two orders of magnitude among the target PFASs: 140–281 mL g⁻¹ for PFOS, 30–54 mL g⁻¹ for PFOA and 9–18 mL g⁻¹ for PFBS. Freundlich and linear fittings were appropriate for describing the sorption behaviour of PFASs in the sludge samples, and the derived KF and Kd,ₗᵢₙₑₐᵣ parameters correlated well. The hydrophobicity of the PFASs was the key parameter that influenced their sorption in sewage sludge. Sorption parameters and log(KOW) were correlated, and for PFOS (the most hydrophobic compound), pH and Ca + Mg status of the sludge controlled the variation in the sorption parameter values. Sorption reversibility was also tested from desorption isotherms, which were also linear. Desorption parameters were systematically higher than the corresponding sorption parameters (up to sixfold higher), thus indicating a significant degree of irreversible sorption, which decreased in the sequence PFOS > PFOA > PFBS.
Afficher plus [+] Moins [-]Enhanced nutrient removal from municipal wastewater assisted by mixotrophic microalgal cultivation using glycerol Texte intégral
2016
Gupta, Prabuddha L. | Choi, Hee Jeong | Lee, Seung-Mok
In a present study, nutrient removal from municipal wastewater by Chlorella vulgaris and Nannochloropsis oculata was investigated by using mixotrophic cultivation with glycerol (0 to 5 g/L). Performance parameters were assessed by estimating the removal of total nitrogen, total phosphorus, chemical oxygen demand (COD), biomass growth, chlorophyll content, lipid yield, and fatty acids. With the addition of 2 g/L glycerol, a maximum biomass productivity of 56 mg/L/day was achieved in the mixotrophic culture of C. vulgaris within 12 days. The mixotrophic culture showed a 30-fold increase in biomass productivity compared to the wastewater without any glycerol. However, the highest total nitrogen removal (80.62 %), total phosphate removal (60.72 %), and COD removal (96.3 %) was observed in the N. oculata culture supplemented with 3, 5, and 1 g/L glycerol, respectively. These results suggest that mixotrophic cultivation using glycerol offers great potential in the production of renewable biomass, waste water treatment, and consequent production of high-value microalgal oil. Graphical Abstract Simultaneous biomass production and nutrient removal using microalgae cultivated in wastewater supplemented with glycerol
Afficher plus [+] Moins [-]Heavy metal contamination in sediments of an artificial reservoir impacted by long-term mining activity in the Almadén mercury district (Spain) Texte intégral
2016
García-Ordiales, Efrén | Esbrí, José María | Covelli, Stefano | López-Berdonces, Miguel Angel | Higueras, Pablo L. | Loredo, Jorge
Sediments from the Castilseras reservoir, located downstream on the Valdeazogues River in the Almadén mercury district, were collected to assess the potential contamination status related to metals(oids) associated with river sediment inputs from several decommissioned mines. Metals(oids) concentrations in the reservoir sediments were investigated using different physical and chemical techniques. The results were analyzed by principal component analysis (PCA) to explain the correlations between the sets of variables. The degree of contamination was evaluated using the enrichment factor (EF) and the geoaccumulation index (Igeo). PCA revealed that the silty fraction is the main metals(oids) carrier in the sediments. Among the potentially harmful elements, there is a group (Al, Cr, Cu, Fe, Mn, Ni, and Zn) that cannot be strictly correlated to the mining activity since their concentrations depend on the lithological and edaphological characteristics of the materials. In contrast, As, Co, Hg, Pb, and S showed significant enrichment and contamination, thus suggesting relevant contributions from the decommissioned mines through fluvial sediment inputs. As far as Hg and S are concerned, the high enrichment levels pose a question concerning the potential environmental risk of transfer of the organic forms of Hg (mainly methylmercury) from the bottom sediments to the aquatic food chain.
Afficher plus [+] Moins [-]Purification and identification of Bacillus subtilis SPB1 lipopeptide biosurfactant exhibiting antifungal activity against Rhizoctonia bataticola and Rhizoctonia solani Texte intégral
2016
Mnif, Inès | Grau-Campistany, Ariadna | Coronel-León, Jonathan | Hammami, Inès | Triki, Mohamed Ali | Manresa, Angeles | Ghribi, Dhouha
This study reports the potential of a soil bacterium, Bacillus subtilis strain SPB1, to produce lipopeptide biosurfactants. Firstly, the crude lipopeptide mixture was tested for its inhibitory activity against phytopathogenic fungi. A minimal inhibitory concentration (MIC), an inhibitory concentration at 50 % (IC50 %), and an inhibitory concentration at 90 % (IC90 %) values were determined to be 0.04, 0.012, and 0.02 mg/ml, respectively, for Rhizoctonia bataticola with a fungistatic mode of action. For Rhizoctonia solani, a MIC, an IC50 %, and IC90 % values were determined to be 4, 0.25, and 3.3 mg/ml, respectively, with a fungicidal mode of action. For both of the fungi, a loss of sclerotial integrity, granulation and fragmentation of hyphal mycelia, followed by hyphal shriveling and cell lysis were observed with the treatment with SPB1 biosurfactant fraction. After extraction, separation, and purification, different lipopeptide compounds were identified in the culture filtrate of strain SPB1. Mass spectroscopic analysis confirmed the presence of different lipopeptide compounds consisting of surfactin isoforms with molecular weights of 1007, 1021, and 1035 Da; iturin isoforms with molecular weights of 1028, 1042, and 1056 Da; and fengycin isoforms with molecular weights of 1432 and 1446 Da. Two new clusters of lipopeptide isoforms with molecular weights of 1410 and 1424 Da and 973 and 987 Da, respectively, were also detected. This study reported the ability of a B. subtilis strain to co-produce lipopeptide isoforms with potential use as antifungal compounds.
Afficher plus [+] Moins [-]Enhanced degradation of benzene by percarbonate activated with Fe(II)-glutamate complex Texte intégral
2016
Fu, Xiaori | Gu, Xiaogang | Lu, Shuguang | Miao, Zhouwei | Xu, Minhui | Zhang, Xiang | Danish, Muhammad | Cui, Hang | Farooq, Usman | Qiu, Zhaofu | Sui, Qian
Effective degradation of benzene was achieved in sodium percarbonate (SPC)/Fe(II)-Glu system. The presence of glutamate (Glu) could enhance the regeneration of Fe(III) to Fe(II), which ensures the benzene degradation efficiency at wider pH range and eliminate the influence of HCO₃⁻ in low concentration. Meanwhile, the significant scavenging effects of high HCO₃⁻ concentration could also be overcome by increasing the Glu/SPC/Fe(II)/benzene molar ratio. Free radical probe compound tests, free radical scavenger tests, and electron paramagnetic resonance (EPR) analysis were conducted to explore the reaction mechanism for benzene degradation, in which hydroxyl radical (HO•) and superoxide anion radical (O₂•⁻) were confirmed as the predominant species responsible for benzene degradation. In addition, the results obtained in actual groundwater test strongly indicated that SPC/Fe(II)-Glu system is applicable for the remediation of benzene-contaminated groundwater in practice.
Afficher plus [+] Moins [-]Organic and inorganic amendment application on mercury-polluted soils: effects on soil chemical and biochemical properties Texte intégral
2016
García Sánchez, Mercedes | Klouza, Martin | Holečková, Zlata | Tlustoš, Pavel | Száková, Jiřina
On the basis of a previous study performed in our laboratory, the use of organic and inorganic amendments can significantly modify the Hg mobility in soil. We have compared the effectiveness of organic and inorganic amendments such as digestate and fly ash, respectively, reducing the Hg mobility in Chernozem and Luvisol soils differing in their physicochemical properties. Hence, the aim of this work was to compare the impact of digestate and fly ash application on the chemical and biochemical parameters in these two mercury-contaminated soils in a model batch experiment. Chernozem and Luvisol soils were artificially contaminated with Hg and then incubated under controlled conditions for 21 days. Digestate and fly ash were applied to both soils in a dose of 10 and 1.5 %, respectively, and soil samples were collected after 1, 7, 14, and 21 days of incubation. The presence of Hg in both soils negatively affected to processes such as nitrification, provoked a decline in the soil microbial biomass C (soil microbial biomass C (MBC)), and the microbial activities (arylsulfatase, and β-glucosaminidase) in both soils. Meanwhile, the digestate addition to Chernozem and Luvisol soils contaminated with Hg improved the soil chemical properties (pH, dissolved organic carbon (DOC), N (Nₜₒₜ), inorganic–N forms (N–NH₄ ⁺ and N–NO₃ ⁻)), as consequence of high content in C and N contained in digestate. Likewise, the soil MBC and soil microbial activities (dehydrogenase, arylsulfatase, and β-glucosaminidase) were greatly enhanced by the digestate application in both soils. In contrast, fly ash application did not have a remarkable positive effect when compared to digestate in Chernozem and Luvisol soil contaminated with mercury. These results may indicate that the use of organic amendments such as digestate considerably improved the soil health in Chernozem and Luvisol compared with fly ash, alleviating the detrimental impact of Hg. Probably, the chemical properties present in digestate may determine its use as a suitable amendment for the assisted-natural attenuation of mercury-polluted soils.
Afficher plus [+] Moins [-]Environmental pollutants: genetic damage and epigenetic changes in male germ cells Texte intégral
2016
Vecoli, Cecilia | Montano, Luigi | Andreassi, Maria Grazia
About a quarter of the human diseases occurs for exposure to air pollution. The male reproductive system, and especially spermatogenesis, seems to be particularly sensitive. As result, male infertility is increasing in industrial countries becoming a top priority for public health. In addition to psychological distress and economic constraints, poorer semen quality may have trans-generational effects including congenital malformations in the offspring and predispose to later onset adult diseases. Genetic and epigenetic alterations are involved in the failure of spermatogenesis. In this paper, we reviewed the major evidences of the effects of air pollutants on male infertility as well as the role of sperm DNA damage and epigenetic changes in affecting spermatogenesis. A better knowledge on the effects of air contaminants on the molecular mechanisms leading to infertility is of huge importance to help clinicians in identifying the cause of infertility but above all, in defining preventive and therapeutic protocols.
Afficher plus [+] Moins [-]Ecological implication of variation in the secondary metabolites in Parmelioid lichens with respect to altitude Texte intégral
2016
Shukla, Vertika | Patel, D. K. | Bajpai, Rajesh | Semwal, Manoj | Upreti, D. K.
Lichens are known to synthesize a variety of secondary metabolites having multifunctional activity in response to external environmental condition. Two common lichen extrolites, atranorin and salazinic acid, are known to afford antioxidant as well as photoprotectant nature depending on the abiotic/biotic stress. The present investigation aims to study the influence of altitudinal gradient on the quantitative profile of atranorin and salazinic acid in three lichen species, Bulbothrix setschwanensis (Zahlbr.) Hale, Everniastrum cirrhatum (Fr.) Hale and Parmotrema reticulatum (Taylor) Choisy, Parmeliaceae using liquid chromatography-mass spectrometry (LC-MS/MS) technique. Samples were collected from high-altitude area, usually considered as non-polluted sites of Garhwal Himalaya. Characterization and quantification of the lichen substances in samples were carried out comparing with the standards of atranorin and salazinic acid. Results indicated significant variation in the chemical content with the rising altitude. All the three lichen species showed higher quantities of chemical substances with the altitudinal rise, while among the three lichen species, E. cirrhatum showed the highest quantity of total lichen compounds. The higher abundance and frequency of E. cirrhatum with increasing altitude as compared to B. setschwanensis and P. reticulatum may be attributed due to the presence of higher quantity of photoprotecting/antioxidant chemicals especially salazinic acid. Thus, the present study shows the prominent role of secondary metabolite in wider ecological distribution of Parmelioid lichens at higher altitudes.
Afficher plus [+] Moins [-]Reduction of selenite to elemental selenium nanoparticles by activated sludge Texte intégral
2016
Jain, Rohan | Matassa, Silvio | Singh, Satyendra | van Hullebusch, Eric D. | Esposito, Giovanni | Lens, P. N. L. (Piet N. L.)
Total selenium removal by the activated sludge process, where selenite is reduced to colloidal elemental selenium nanoparticles (BioSeNPs) that remain entrapped in the activated sludge flocs, was studied. Total selenium removal efficiencies with glucose as electron donor (2.0 g chemical oxygen demand (COD) L⁻¹) at neutral pH and 30 °C gave 2.9 and 6.8 times higher removal efficiencies as compared to the electron donors lactate and acetate, respectively. Total selenium removal efficiencies of 79 (±3) and 86 (±1) % were achieved in shake flasks and fed batch reactors, respectively, at dissolved oxygen (DO) concentrations above 4.0 mg L⁻¹ and 30 °C when fed with 172 mg L⁻¹ (1 mM) Na₂SeO₃ and 2.0 g L⁻¹ COD of glucose. Continuously operated reactors operating at neutral pH, 30 °C and a DO >3 mg L⁻¹ removed 33.98 and 36.65 mg of total selenium per gram of total suspended solids (TSS) at TSS concentrations of 1.3 and 3.0 g L⁻¹, respectively. However, selenite toxicity to the activated sludge led to failure of a continuously operating activated sludge reactor at the applied loading rates. This suggests that a higher hydraulic retention time (HRT) or different reactor configurations need to be applied for selenium-removing activated sludge processes.
Afficher plus [+] Moins [-]