Affiner votre recherche
Résultats 41-50 de 444
Short-term effects of dimethoate on metabolic responses in Chrysolina pardalina (Chrysomelidae) feeding on Berkheya coddii (Asteraceae), a hyper-accumulator of nickel
2007
Augustyniak, M. | Migula, P. | Mesjasz-Przybylowicz, J. | Tarnawska, M. | Nakonieczny, M. | Babczynska, A. | Przybylowicz, W. | Augustyniak, M.G.
Berkheya coddii Roessler (Asteraceae) is a hyper-accumulator of nickel, which can be used in phytomining and phytoremediation. Chrysolina pardalina Fabricius (Chrysomelidae) is a phytophagous leaf beetle, which may be useful in controlling population levels of B. coddii after it has been introduced into a new habitat. The aim of this study was to investigate the response of C. pardalina to topical application of dimethoate. Data recorded included the activity of acetylcholinesterase (AChE), the concentration of glutathione (GSH), and the activity of selected enzymes connected with GSH metabolism. Assays were carried out several times during the first 24 h after exposure to dimethoate. At the dosages used in this study, dimethoate was not as toxic as expected. AChE activity was significantly decreased 14 and 24 h after application. GST activity was significantly decreased 24 h after application. GSTPx activity was significantly decreased 2, 14 and 24 h after application. GR activity was significantly increased 4 h after application. GSH concentration was significantly increased 24 h after application. Long-term exposure to high levels of nickel may have caused adaptive changes in the enzymes that enable C. pardalina to deal with other stressors, including organophosphate pesticides. Long-term exposure to high levels of nickel may have caused adaptive changes in the enzymes that enable Chrysolina pardalina to deal with other stressors, including organophosphate pesticides.
Afficher plus [+] Moins [-]Phytotoxicity of nanoparticles: Inhibition of seed germination and root growth
2007
Lin, D. | Xing, B.
Plants need to be included to develop a comprehensive toxicity profile for nanoparticles. Effects of five types of nanoparticles (multi-walled carbon nanotube, aluminum, alumina, zinc, and zinc oxide) on seed germination and root growth of six higher plant species (radish, rape, ryegrass, lettuce, corn, and cucumber) were investigated. Seed germination was not affected except for the inhibition of nanoscale zinc (nano-Zn) on ryegrass and zinc oxide (nano-ZnO) on corn at 2000 mg/L. Inhibition on root growth varied greatly among nanoparticles and plants. Suspensions of 2000 mg/L nano-Zn or nano-ZnO practically terminated root elongation of the tested plant species. Fifty percent inhibitory concentrations (IC50) of nano-Zn and nano-ZnO were estimated to be near 50 mg/L for radish, and about 20 mg/L for rape and ryegrass. The inhibition occurred during the seed incubation process rather than seed soaking stage. These results are significant in terms of use and disposal of engineered nanoparticles. Engineered nanoparticles can inhibit the seed germination and root growth.
Afficher plus [+] Moins [-]Phytotoxic risk assessment of ambient air pollution on agricultural crops in Selangor State, Malaysia
2007
Ishii, S. | Bell, J.N.B. | Marshall, F.M.
The phytotoxic risk of ambient air pollution to local vegetation was assessed in Selangor State, Malaysia. The AOT40 value was calculated by means of the continuously monitored daily maximum concentration and the local diurnal pattern of O3. Together with minor risks associated with the levels of NO2 and SO2, the study found that the monthly AOT40 values in these peri-urban sites were consistently over 1.0 ppm·h, which is well in exceedance of the given European critical level. Linking the O3 level to actual agricultural crop production in Selangor State also indicated that the extent of yield losses could have ranged from 1.6 to 5.0% (by weight) in 2000. Despite a number of uncertainties, the study showed a simple but useful methodological framework for phytotoxic risk assessment with a limited data set, which could contribute to appropriate policy discussion and countermeasures in countries under similar conditions. There is a large potential of phytotoxic risk on vegetation in Selangor State, Malaysia.
Afficher plus [+] Moins [-]Comparison of electrokinetic soil remediation methods using one fixed anode and approaching anodes
2007
Shen, Z. | Chen, X. | Jia, J. | Qu, L. | Wang, W.
During the cation exchange membrane (CEM) enhanced electrokinetic (EK) soil remediation, the nearer to the anode, the higher are the H+ concentrations and the redox potentials. As both low pH and high redox potential are helpful to speedup Cd electro-migration, soils near the anode can be quickly remedied. Usually EK process is operated with one fixed anode (FA). A novel CEM enhanced EK method with approaching anodes (AAs) is proposed to accelerate electro-migration effect. Several mesh Ti/Ru anodes were inserted as AAs in the treated soil. They were switched in turn from the anode towards the cathode. Thus high H+ ions concentrations and high redox potentials quickly migrate to the cathode. Consequently, soil remediation is accelerated and nearly 44% of energy and 40% of time can be saved. The mechanism of Cd electro-migration behavior in soils during CEM enhanced EK is described as the elution in an electrokinetically driven chromatogram. During electrokinetic remediation, the nearer to the anode, the higher are the Cd removal velocities. A novel method with approaching anodes is proposed to accelerate remediation effect.
Afficher plus [+] Moins [-]Future climate scenarios and rainfall-runoff modelling in the Upper Gallego catchment (Spain)
2007
Burger, C.M. | Kolditz, O. | Fowler, H.J. | Blenkinsop, S.
Global climate change may have large impacts on water supplies, drought or flood frequencies and magnitudes in local and regional hydrologic systems. Water authorities therefore rely on computer models for quantitative impact prediction. In this study we present kernel-based learning machine river flow models for the Upper Gallego catchment of the Ebro basin. Different learning machines were calibrated using daily gauge data. The models posed two major challenges: (1) estimation of the rainfall-runoff transfer function from the available time series is complicated by anthropogenic regulation and mountainous terrain and (2) the river flow model is weak when only climate data are used, but additional antecedent flow data seemed to lead to delayed peak flow estimation. These types of models, together with the presented downscaled climate scenarios, can be used for climate change impact assessment in the Gallego, which is important for the future management of the system. Future climate change and data-based rainfall-runoff predictions are presented for the Upper Gallego.
Afficher plus [+] Moins [-]Multivariate statistical evaluation of trace elements in groundwater in a coastal area in Shenzhen, China
2007
Chen, K. | Jiao, J.J. | Huang, J. | Huang, R.
Multivariate statistical techniques are efficient ways to display complex relationships among many objects. An attempt was made to study the data of trace elements in groundwater using multivariate statistical techniques such as principal component analysis (PCA), Q-mode factor analysis and cluster analysis. The original matrix consisted of 17 trace elements estimated from 55 groundwater samples colleted in 27 wells located in a coastal area in Shenzhen, China. PCA results show that trace elements of V, Cr, As, Mo, W, and U with greatest positive loadings typically occur as soluble oxyanions in oxidizing waters, while Mn and Co with greatest negative loadings are generally more soluble within oxygen depleted groundwater. Cluster analyses demonstrate that most groundwater samples collected from the same well in the study area during summer and winter still fall into the same group. This study also demonstrates the usefulness of multivariate statistical analysis in hydrochemical studies. Multivariate statistical analysis was used to investigate relationships among trace elements and factors controlling trace element distribution in groundwater.
Afficher plus [+] Moins [-]Development and validation of a terrestrial biotic ligand model predicting the effect of cobalt on root growth of barley (Hordeum vulgare)
2007
Lock, K. | Schamphelaere, K.A.C de | Becaus, S. | Criel, P. | Eeckhout, H van | Janssen, C.R.
A Biotic Ligand Model was developed predicting the effect of cobalt on root growth of barley (Hordeum vulgare) in nutrient solutions. The extent to which Ca2+, Mg2+, Na+, K+ ions and pH independently affect cobalt toxicity to barley was studied. With increasing activities of Mg2+, and to a lesser extent also K+, the 4-d EC50Co2+ increased linearly, while Ca2+, Na+ and H+ activities did not affect Co2+ toxicity. Stability constants for the binding of Co2+, Mg2+ and K+ to the biotic ligand were obtained: log KCoBL = 5.14, log KMgBL = 3.86 and log KKBL = 2.50. Limited validation of the model with one standard artificial soil and one standard field soil showed that the 4-d EC50Co2+ could only be predicted within a factor of four from the observed values, indicating further refinement of the BLM is needed. Biotic Ligand Models are not only a useful tool to assess metal toxicity in aquatic systems but can also be used for terrestrial plants.
Afficher plus [+] Moins [-]Agricultural opportunities to mitigate greenhouse gas emissions
2007
Johnson, J.M.F. | Franzluebbers, A.J. | Weyers, S.L. | Reicosky, D.C.
Agriculture is a source for three primary greenhouse gases (GHGs): CO2, CH4, and N2O. It can also be a sink for CO2 through C sequestration into biomass products and soil organic matter. We summarized the literature on GHG emissions and C sequestration, providing a perspective on how agriculture can reduce its GHG burden and how it can help to mitigate GHG emissions through conservation measures. Impacts of agricultural practices and systems on GHG emission are reviewed and potential trade-offs among potential mitigation options are discussed. Conservation practices that help prevent soil erosion, may also sequester soil C and enhance CH4 consumption. Managing N to match crop needs can reduce N2O emission and avoid adverse impacts on water quality. Manipulating animal diet and manure management can reduce CH4 and N2O emission from animal agriculture. All segments of agriculture have management options that can reduce agriculture's environmental footprint. Management options can be used to reduce agriculture's environmental impacts.
Afficher plus [+] Moins [-]Toward a biologically significant and usable standard for ozone that will also protect plants
2007
Paoletti, E. | Manning, W.J.
Ozone remains an important phytotoxic air pollutant and is also recognized as a significant greenhouse gas. In North America, Europe, and Asia, incidence of high concentrations is decreasing, but background levels are steadily rising. There is a need to develop a biologically significant and usable standard for ozone. We compare the strengths and weaknesses of concentration-based, exposure-based and threshold-based indices, such as SUM60 and AOT40, and examine the O3 flux concept. We also present major challenges to the development of an air quality standard for ozone that has both biological significance and practicality in usage. Current standards do not protect vegetation from ozone, but progress is being made.
Afficher plus [+] Moins [-]Acceleration of selenium volatilization in seleniferous agricultural drainage sediments amended with methionine and casein
2007
Bañuelos, G.S. | Lin, Z.Q.
Phytoremediation is potentially effective for managing excessive selenium (Se) in drainage sediment residing in the San Luis Drain in central California. This 2-year field study examined the feasibility of amending drainage sediment (containing 4.78 mg Se g 1) with methionine and casein to enhance volatilization without or with vegetation of Sporobolus airoides. Results show that without organic amendments, rates of Se volatilization were less than 25 mgm 2 d 1 in all plots. After amending the sediment with 71.4 mg methionine kg 1 soil, Se volatilization rates were 434 107 mgm 2 d 1 in vegetated plots and 289 117 mgm 2 d 1 in irrigated bare plots.With the amendment of 572 mg casein kg 1 soil, rates increased to 346 103 mgm 2 d 1 in irrigated bare plots and to 114 55 mgm 2 d 1 in vegetated plots. Both methionine and casein promoted biological remediation of Se via volatilization most effectively during the warmest months.
Afficher plus [+] Moins [-]