Affiner votre recherche
Résultats 41-50 de 734
Application of Artificial Neural Network and Multiple Linear Regression for Modelling Adsorptive Removal of Pb (II) ions over Cedrus deodara Bark Powder Texte intégral
2024
Lall, Anurag | Pandey, Avinash | Mani, Jyoti
Cedrus deodara is a coniferous tree native to Himalayan region. Its wood is a valuable resource for the timber industry; however, its bark is typically discarded as a waste material. The present study examines the performance of Cedrus deodara bark powder (CD) as an inexpensive adsorbent for elimination of Pb (II) ions. In addition to this multiple linear regression (MLR) and artificial neural network (ANN) models were developed for modelling the adsorption process and prediction of Pb (II) removal efficiency. The structural and chemical properties of CD were explored using Field Emission Scanning Electron Microscope (FE-SEM), Energy Dispersive Spectrometer (EDS), X-Ray Diffractometer (XRD) and Fourier Transform Infrared Spectroscopy (FTIR). Batch experiments were conducted to investigate the influence of factors including pH, contact time, initial Pb (II) concentration and temperature on Pb (II) adsorption. The adsorption followed pseudo-second-order kinetic and Langmuir isotherm models with maximum monolayer uptake capacity 77.52 mg/g. Based on the thermodynamic criteria, the process was endothermic and spontaneous with enthalpy change (ΔH = 8.08 kJ/mol), free energy change (ΔG = -2.44 kJ/mol) and entropy change (ΔS = 0.03 kJ/K/mol). Statistical comparison of MLR model (R2 = 0.817, RMSE = 8.954, MAPE = 17.379 %) and ANN model (R2 = 0.993, RMSE = 1.777, MAPE = 2.054 %) confirmed that ANN model was far more accurate in predicting removal efficiency.
Afficher plus [+] Moins [-]Biomonitoring of Heavy Metals Accumulation with Pseudevernia furfuracea (L.) Zopf in Kırşehir Province, Türkiye Texte intégral
2024
Işık, Volkan | Yıldız, Atila
Today, the problem of air pollution has been highlighted by rapid population growth and urbanisation, along with the development of industry. Over the last fifty years, much attention has been paid to the relationship between lichens and airborne particulate matter (especially heavy metals). The use of living organisms in air pollution studies is now widely accepted in many countries and the results of these biomonitoring studies are very important for future action. The goal of this study was to determine heavy metals in Kırşehir province using the bag technique, a biomonitoring approach, with Pseudevernia furfuracea (L.) Zopf lichen and to develop a pollution map of the city. In November 2002, lichen specimens were obtained from an unpolluted region in the Yapraklı Mountains, Çankırı, and transplanted to 4 distinct places in Kırşehir. After 3 and 6 months of exposure, they were collected in order to analyse heavy metals (Cu, Cd, Mn, Ni, Pb and Zn) with Inductively Coupled Plasma-Mass Spectrometry (ICP-MS). In addition, chlorophyll-a and chlorophyll-b contents were determined by Dimethyl sulfoxide (DMSO) method. The findings revealed that the heavy metal contents in various stations are the result of industrial, traffic, and heating activities. As a result, P. furfuracea showed excellent bioindicator ability for detecting air pollution.
Afficher plus [+] Moins [-]A Simulation to Assess the Probability of the Spread of Radioactive Materials from the Zaporizhzhia Nuclear Power Plant using the HYSPLIT Model Texte intégral
2024
Valizadeh, Behshad | Heydarizade, Yassin | Tayebi, Javad | Rezaie, Mohammad Reza
Today, world pollution is increasing, and many pollutants such as radioactive elements enter to environment through human activity contaminants play an essential role in human life and health. Therefore, the examination of models for dispersion caused by radioactive substances is an important issue. This article is a simulation study of the hypothetical scenario of the Zaporizhzhia Nuclear Power Plant (ZNPP) in Ukraine, which is one of the NPPs in Europe. This scenario includes the occurrence of an accident in the power plant that entry of pollutants to environment and creates an environmental disaster. The simulation of this scenario was done using the Hyspli4 )Hybrid Single-Particle Lagrangian Integrated Trajectory) model and NOAA website data of ZNPP (include the wind information, temperature, humidity, and atmospheric pressure in different spatial and temporal scales) to predict and deal with pollutants. The simulation was conducted in the first week of April 2023 for 131 I and 137Cs elements, which are important elements that come out of the power plant and cause many problems. The results show the highest annual dose and concentration are 4.6 mSv/year and 2.7E+06 Bq.s/m3 respectively. It also shows that in the event of pollution, the entry of contaminated materials into the Dnieper River and the western edge of the blackened sea will bring a great disaster. Also, the eastern and northeastern regions of Ukraine, especially Kharkiv and the western borders of Russia, lead to pollution that causes radiation hazard, so the news should be shared with everyone before an actual incident occurs.
Afficher plus [+] Moins [-]A framework of Trapezoidal Fuzzy Best-Worst Method in Location Selection for Surface Water Treatment Plant Texte intégral
2024
Debnath, Kalyani | Debnath, Piyali | Choudhury, Sudipa | Saha, Apu | Majumdar, Abhijit
Decision-making under uncertainty refers to a dilemma when a decision-maker is aware of a variety of potential natural states but lacks adequate information to assign any probabilities of occurrence to them. The uncertainty related to the input parameters is one of the main issues in the majority of decision-making situations. Uncertainty may produce some irrational results, which could make the decision-making process even more challenging. To overcome this challenge, a fuzzy extension of Best-Worst Method (BWM) has been proposed, using trapezoidal fuzzy sets, to combine the advantages of a reduced number of pair-wise comparisons and easy handling of ambiguity. The criteria and alternatives have been evaluated by the proposed Trapezoidal Fuzzy Best-Worst Method (TrFBWM), where the weight of each element is represented by a Trapezoidal Fuzzy Number (TrFN). To verify the coherence of judgment, the consistency ratio is evaluated for TrFBWM. The proposed method is then applied to the location selection of a water treatment plant along the bank of the Brahmaputra river in Assam. The obtained results are compared to one previous work and found that the outcomes of the proposed method indicate a good agreement with that. The outcomes of the study provide useful insights for selecting a suitable location for a surface water treatment plant which can also be extended to other service facilities.
Afficher plus [+] Moins [-]Purification of Heavy Metals Contaminated Groundwater by Electro-Coagulation Process Using Graphite Electrodes Texte intégral
2024
Muhibbu-Din, Eniola Ismail | Jimoh, Heekmah Oiza | Kehinde, David Pelumi | Tinuoye, Ifeoluwa Agnes
The application of the electro-coagulation process to the identified contaminated groundwater at Abala community, a suburb of Ilorin metropolis in Kwara state, Nigeria, is the subject of this study. The groundwater samples were electro-coagulated in a batch reactor of 2.5L containing 1 litre volume of contaminated groundwater for 1 hour per run using a DC power supply ranging from 10v to 20v at constant current 5amp and 2amp to 6amp at constant voltage 10v using graphite electrodes. The results revealed that electro-coagulation process can reduce turbidity, TDS, Electrical Conductivity, BOD, TOC, COD, and color by 97.3 %, 91.2 %, 91.1 %, 96 %, 99.7%, 99.7%, 79.9%, and 82.96 %, respectively. Through Atomic Absorption spectroscopy analytical study, the process also shows removal efficiency of Manganese, Iron, and Zinc of 82.96 percent, 70.0 percent, and 95.30 percent, respectively. The outcome of the electro-coagulation process met the World Health Organization (WHO), the United States Environmental Protection Agency (USEPA), and the Water Environment Partnership In Asia (WEPA) criteria for both drinking water and general industrial wastewater discharge guidelines. The electro-coagulation treatment for contaminated groundwater was efficient and effective, therefore it is recommended in this study for Nigerians.
Afficher plus [+] Moins [-]Modeling Airflow in Urban High-Rise Building Areas and Climate Comfort Texte intégral
2024
Zahedifar, Tahmineh | Darabi, Hassan
Urban morphology impacts micro-climates, solar energy absorption, air flow, wind patterns, energy consumption, and air pollution concentration. Temperature control in public spaces reduces heat island formation, while ventilation corridors potentially improve air quality. However, despite the literature on airflow and urban tall buildings providing valuable insights, further research is needed to understand the complex relationship between airflow patterns and urban high-rise buildings. This research should consider factors such as landscape types, building height, density, and orientation. This research aims to examine airflow patterns in high-rise buildings that are influenced by nearby land use, which can impact ventilation and climate comfort. To investigate these objectives, we utilized the Universal Thermal Climate Index (UTCI) and Predicted Mean Vote Index (PMV) by conducting simulations using ENVI-met software. The results revealed that buildings with narrower widths have better wind warded front conditions, while those with an unfavorable wind angle or a narrow facade are less comfortable. Public spaces that face the wind benefit from improved ventilation. It is essential to consider the optimal arrangement, ventilation, and height of buildings to ensure the favorable airflow. Factors such as the placement of trees, the use of porous walls, water features such as fountains and sprinklers, and the local climate all contribute to creating better wind conditions. Investigating the reciprocal interaction between the landscape, high-rise buildings, and climate comfort could be considered in future research.
Afficher plus [+] Moins [-]Enhanced Removal of Chromate from Aqueous Solution Using a Metal Oxide Nanocomposite Derived from Bimetallic Metal Organic Framework with Both Adsorption and Catalytic Properties Texte intégral
2024
Salari, Hadi | Zeraatkar Moghaddam, Ali
Removing environmental pollutants and preserving the environment is an important issue and many efforts have been made in this regard in recent years. In the present work, chromate ions were removed from aqueous solutions by ZnO/CuO acting as both adsorbent and catalyst. Metal oxide fabrication from metal organic framework is one of the most important and interesting scientific issues for the synthesis of high surface area materials. Here, we demonstrate ZnO/CuO synthesis from bimetallic Zn-Cu metal-organic framework (Zn(50)-Cu(50)-BTC) using temperature-programmed oxidation method. The adsorptive and catalytic removal procedure were optimized in terms of its batch efficiency using experimental designs. The effect of hole scavenger type was investigated, and the relationships between the effective important removal procedure parameters and chromate removal efficiency were analyzed through the response surface methodology (RSM) based on central composite design (CCD). The correlation coefficient (R2) and F values were 0.9883 and 74.81, respectively. Finally, simplex non-linear optimization was carried out and the optimal pH, ZnO/CuO amount and contact time were determined to be 2, 20 mg, and 17.5 min. Under these conditions, the predicted removal efficiency of 50 ppm chromate at a 95% confidence level was 98.1 ± 2.4%, which was very close to the recorded response (i.e. 99.4 ± 1.9%). The kinetic and isothermal profiles of the proposed ZnO/CuO, were thoroughly investigated under optimal conditions. The adsorption isotherm follow the Langmuir model and kinetics were found to be pseudo-second-order.
Afficher plus [+] Moins [-]Performance of Natural Coagulant Extracted from Castanea Sativa Tree Leaves in Water Purification processes Texte intégral
2024
Hasan, Manar | Hassan, Ahmad | Al-Tameemi, Israa M. | Hassan, Nawar
Numerous coagulants, including natural and chemical coagulants, have been examined in the context of water purification. The use of natural coagulants constitutes an affordable and eco-friendly method of purifying water. The main aim of the current study was represented by investigated the feasibility of coagulant extracted from Castanea Sativa Tree Leaves using three different salts and distilled water. The active coagulant component was extracted using 0.25, 0.5, and 1 M of NaCl and KCl, 0.025, 0.05, and 0.1 M of NaOH, and distilled water. Powdered Castanea Sativa Tree Leaves was also used as a coagulant. Jar tests were performed using synthetic turbid water, a turbidity level of 35 NTU to investigate the coagulants’ activity. The pH was measured to study the influence of a range of different pHs, coagulant doses and initial turbidity were also investigated to optimize the coagulation process. The highest level of activity was achieved using 0.5 ml/l of coagulant extracted with 0.5 M NaCl at pH level 8. Coagulant extracted using 0.05 M NaOH demonstrated the second highest level of activity. Poor coagulant activity was observed for the powdered Castanea Sativa Tree Leaves and distilled water extract. The protein content of the extracted coagulant was 0.322, 0.283, and 0.274 mg/ml using 0.05 M NaCl, 0.5 M NaOH, and 0.5 M KCl, respectively. The use of this natural coagulant was also found to moderately increase organic matter content in the treated water, which was proportional to protein contents of the extracts. Coagulation results were statistically examined using SigmaPlot 12.5 software.
Afficher plus [+] Moins [-]Removal of Congo Red by Waste Fish Scale: Isotherms, Kinetics, Thermodynamics and Optimization Studies Texte intégral
2024
Roy, Tapas | Mondal, Anupam | Mondal, Naba Kumar
Cong-red dye is a precursor of various products of cotton industry and its toxicity in the aquatic environment is a great concern. Present study was highlighted on the efficacy of the fish scale char (FSC) towards removal of congo red from aqueous solution. The prepared FSC was characterized by zero point charge (pHZPC), scanning electron micrograph with elemental analysis (SEM-EDX) and fourier transform infrared (FTIR). Based in the equilibrium and kinetic study, the Langmuir (R2 = 0.967) and Pseudo-second-order (R2 = 1.00) models are appropriate to describe the dye adsorption process. The randomness and exothermic nature of the system were confirmed by the negative values of both entropy and enthalpy, respectively. Finally, optimization by Response Surface Methodology (RSM) study revealed that the experimental data were nicely fitted with central composite design with very high F value (F = 1596.24, p < 0.0001). Perturbation plot suggested that congo-red dye removal is more sensitive with respect to biosorbent dose, pH and initial concentration. The exhausted adsorbent was regenerated with 0.5(M) NaOH solution. Therefore, it can be concluded that fish scale char could be a valuable materials towards purification of industrial effluent.
Afficher plus [+] Moins [-]Concentration of Selected Phenolic Compounds in Effluent, Stream and Groundwater of a Local Textile Industry in Abeokuta, Ogun State, Nigeria Texte intégral
2024
Olayinka, Olufunmilayo | Egbeyemi, Morenikeji | Oyebanji, Adedayo
Phenols have attracted global interest in the sphere of environmental management due to their potential toxicity on human health. This study determined concentrations of three priority phenolic compounds in effluent and water of a local textile industry in Abeokuta, Nigeria. During tie-dye production, triplicates of effluent, well water, stream and control water were collected three times from five points to give a total of forty-five samples. Physicochemical parameters of samples including temperature, pH, electrical conductivity (EC), total suspended solids (TSS) and total dissolved solids (TDS) were determined according to standard methods while the concentrations of the priority phenolic compounds (4-nitrophenol, 4-chloro-3-methylphenol and 2, 4-dinitrophenol) were determined using High Performance Liquid Chromatography equipped with Ultra-Violet detector (HPLC/UV). Data obtained were subjected to descriptive (mean and standard deviation) and inferential (ANOVA) statistics. pH, EC and TSS of effluent and water samples were higher than the permissible limits of World Health Organization (WHO) and Federal Environmental Protection Agency (FEPA) while temperature of the effluent samples and TDS of the well water samples were within standard values. Higher concentrations of the priority phenolic compounds occurred in effluent than water samples but 4-nitrophenol was below detection limit (DL) in water samples. Concentrations of 4-nitrophenol, 4-chloro-3-methylphenol and 2,4-dinitrophenol in effluent exceeded stipulated standard of WHO (0.01 mg/L) and water samples. High concentrations of phenols in water bodies at the local textile industry suggest uncontrolled discharge of effluent from the industry which could eventually reach surface and ground water with potential significant health implications to the populace.
Afficher plus [+] Moins [-]