Affiner votre recherche
Résultats 401-410 de 7,995
Artificial light pollution inhibits plant phenology advance induced by climate warming Texte intégral
2021
Lian, Xihong | Jiao, Limin | Zhong, Jing | Jia, Qiqi | Liu, Jiafeng | Liu, Zejin
Natural photic regime has been drastically altered by the artificial night sky luminance. Despite evidence of sufficient light brightness inducing plant physiology and affecting phenology, generalization regarding effects of light pollution on plant phenology across species and locations is less clear. Meanwhile, the relative contributions and joint effects of artificial light pollution and climate change or other anthropic stressors still remain unknown. To fill this knowledge gap, we utilized in situ plant phenological observations of seven tree species during 1991–2015 in Europe, night-time light dataset and gridded temperature dataset to investigate the impacts of the artificial light pollution on spatial-temporal shifts of plant phenological phases under climatic warming. We found 70% of the observation sites were exposed to increased light pollution during 1992–2015. Among them, plant phenological phases substantially delayed at 12–39% observation sites of leaf-out, and 6–53% of flowering. We also found plant species appeared to be more sensitive to artificial light pollution, and phenology advancement was hindered more prominently and even delay phenomenon exhibited when the color level showed stronger sky brightness. Linear mixed models indicate that although temperature plays a dominant role in shifts of plant phenological phases at the spatial scale, the inhibitory effect of artificial light pollution is evident considering the interactions. To our knowledge, this study is the first to quantitatively establish the relationship between artificial light pollution and plant phenology across species and locations. Meanwhile, these findings provide a new insight into the ecological responses of plant phenology to the potential but poorly understood environmental stressors under this warmer world and call for light pollution to be accorded the equal status as other global change phenomena.
Afficher plus [+] Moins [-]The characteristics of carbonaceous particles down to the nanoparticle range in Rangsit city in the Bangkok Metropolitan Region, Thailand Texte intégral
2021
Boongla, Yaowatat | Chanonmuang, Phuvasa | Hata, Mitsuhiko | Furuuchi, Masami | Phairuang, Worradorn
Atmospheric size-classified particles in sizes ranging from small to nanoparticles (PM₀.₁) are reported for Rangsit City in the Bangkok Metropolitan Region (BMR) of Thailand, for October 2019 (wet season) and January–February 2020 (dry season). The sampling involved the use of a PM₀.₁ cascade air sampler to determine the mass concentration. The PMs consisted of six stages including TSP–PM₁₀, PM₂.₅₋₁₀, PM₁.₀₋₂.₅, PM₀.₅₋₁.₀, PM₀.₅₋₁.₀ and PM₀.₁. Elemental carbon (EC) and organic carbon (OC) were evaluated by a carbon analyzer following the IMPROVE_TOR protocol. The average PM₀.₁ mass concentrations were found to be 13.47 ± 0.79 (wet season) and 18.88 ± 3.99 (dry season) μg/m³, respectively. The average OC/EC ratio for the rainy season was lower than that in the dry season. The char-EC/soot-EC ratios were consistently below 1 for the PM₀.₁ fraction in both seasons indicating that vehicular traffic appeared to be the main emission source. However, the influence of open biomass burning on fine and coarse PM particles on local air pollution was found to be an important issue during the wet season. In addition, long-range transport from other countries may also contribute to the carbon content in the Bangkok Metropolitan Region (BMR) atmosphere during the dry season. The higher secondary organic carbon to organic carbon (SOC/OC) ratio in the dry season is indicative of the contribution of secondary sources to the formation of PM, especially finer particles. A strong correlation between OC and EC in nanoparticles was found, indicating that they are derived from sources of constant emission, likely the diesel engines. Conversely, the OC and EC correlation for other size-specific PMs decreased during the dry season, indicating that these emission sources were more varied.
Afficher plus [+] Moins [-]Water contamination with atrazine: is nitric oxide able to improve Pistia stratiotes phytoremediation capacity? Texte intégral
2021
Vieira, Lorena A.J. | Alves, Rauander D.F.B. | Menezes-Silva, Paulo E. | Mendonça, Maria A.C. | Silva, Maria L.F. | Silva, Maria C.A.P. | Sousa, Leticia F. | Loram-Lourenço, Lucas | Alves da Silva, Adinan | Costa, Alan Carlos | Silva, Fabiano G. | Farnese, Fernanda S.
Atrazine is an herbicide commonly used in several countries. Due to its long half-life, associated with its use in large scales, atrazine residues remain as environmental pollutants in water bodies. Phytoremediation is often pointed out as an interesting approach to remove atrazine from the aquatic environment, but its practical application is limited by the high toxicity of this herbicide. Here, we characterize the damages triggered by atrazine in Pistia stratiotes, evaluating the role of nitric oxide (NO), a cell-signaling molecule, in increasing the tolerance to the pollutant and the phytoremediation potential of this species. Pistia stratiotes plants were exposed to four treatments: Control; Sodium nitroprusside (SNP) (0.05 mg L⁻¹); Atrazine (ATZ) (150 μg L⁻¹) and ATZ + SNP. The plants remained under those conditions for 24 h for biochemical and physiological analysis and 3 days for the evaluation of relative growth rate. The presence of atrazine in plant cells triggered a series of biochemical and physiological damages, such as the increase in the generation of reactive oxygen species, damages to cell membranes, photosynthesis impairment, and negative carbon balance. Despite this, the plants maintained greater growth rates than other aquatic macrophytes exposed to atrazine and showed high bioconcentration and translocation factors. The addition of SNP, a NO donor, decreased the herbicide toxicity, with an increase of over 60% in the IC₅₀ value (Inhibitor Concentration). Indeed, the NO signaling action was able to increase the tolerance of plants to atrazine, which resulted in increments in pollutant uptake and translocation, with the maintenance of overall cell (e.g. membranes) and organs (root system) structure, and the functioning of central physiological processes (e.g. photosynthesis). These factors allowed for more quickly and efficient removal of the pollutant from the environment, reducing costs, and increasing the viability of the phytoremediation process.
Afficher plus [+] Moins [-]Understanding the true effects of the COVID-19 lockdown on air pollution by means of machine learning Texte intégral
2021
Lovrić, Mario | Pavlović, Kristina | Vuković, Matej | Grange, Stuart K. | Haberl, Michael | Kern, Roman
During March 2020, most European countries implemented lockdowns to restrict the transmission of SARS-CoV-2, the virus which causes COVID-19 through their populations. These restrictions had positive impacts for air quality due to a dramatic reduction of economic activity and atmospheric emissions. In this work, a machine learning approach was designed and implemented to analyze local air quality improvements during the COVID-19 lockdown in Graz, Austria. The machine learning approach was used as a robust alternative to simple, historical measurement comparisons for various individual pollutants. Concentrations of NO₂ (nitrogen dioxide), PM₁₀ (particulate matter), O₃ (ozone) and Oₓ (total oxidant) were selected from five measurement sites in Graz and were set as target variables for random forest regression models to predict their expected values during the city’s lockdown period. The true vs. expected difference is presented here as an indicator of true pollution during the lockdown. The machine learning models showed a high level of generalization for predicting the concentrations. Therefore, the approach was suitable for analyzing reductions in pollution concentrations. The analysis indicated that the city’s average concentration reductions for the lockdown period were: -36.9 to −41.6%, and −6.6 to −14.2% for NO₂ and PM₁₀, respectively. However, an increase of 11.6–33.8% for O₃ was estimated. The reduction in pollutant concentration, especially NO₂ can be explained by significant drops in traffic-flows during the lockdown period (−51.6 to −43.9%). The results presented give a real-world example of what pollutant concentration reductions can be achieved by reducing traffic-flows and other economic activities.
Afficher plus [+] Moins [-]Arsenic speciation in rice bran: Agronomic practices, postharvest fermentation, and human health risk assessment across the lifespan Texte intégral
2021
Weber, Annika M. | Baxter, Bridget A. | McClung, Anna | Lamb, Molly M. | Becker-Dreps, Sylvia | Vilchez, Samuel | Koita, Ousmane | Wieringa, Frank | Ryan, Elizabeth P.
Arsenic (As) exposure is a global public health concern affecting millions worldwide and stems from drinking water and foods containing As. Here, we assessed how agronomic practices and postharvest fermentation techniques influence As concentrations in rice bran, and calculated health risks from consumption. A global suite of 53 rice brans were tested for total As and speciation. Targeted quantification of inorganic As (iAs) concentrations in rice bran were used to calculate Target Hazard Quotient (THQ) and Lifetime Cancer Risk (LCR) across the lifespan. Mean iAs was highest in Thailand rice bran samples (0.619 mg kg⁻¹) and lowest in Guatemala (0.017 mg kg⁻¹) rice bran samples. When comparing monosodium-methanearsonate (MSMA) treated and the Native-soil counterpart under the irrigation technique Alternate Wetting and Drying (AWD) management, the MSMA treatment had significantly higher total As (p = 0.022), and iAs (p = 0.016). No significant differences in As concentrations were found between conventional and organic production, nor between fermented and non-fermented rice bran. Health risk assessment calculations for the highest iAs-rice bran dosage scenario for adults, children and infants exceeded THQ and LCR thresholds, and LCR was above threshold for median iAs-rice bran. This environmental exposure investigation into rice bran provides novel information with food safety guidance for an emerging global ingredient.
Afficher plus [+] Moins [-]Highly elevated levels, infant dietary exposure and health risks of medium-chain chlorinated paraffins in breast milk from China: Comparison with short-chain chlorinated paraffins Texte intégral
2021
Xu, Chi | Wang, Kunran | Gao, Lirong | Zheng, Minghui | Li, Jingguang | Zhang, Lei | Wu, Yongning | Qiao, Lin | Huang, Di | Wang, Shuang | Li, Da
Short-chain chlorinated paraffins (SCCPs) are persistent organic pollutants which are toxic to human. Median-chain chlorinated paraffins (MCCPs) have similar toxicity to SCCPs. The productions of chlorinated paraffins (CPs) in China were 1 million tons in 2013 and remained high after that, which may lead to high risks for human exposure to CPs. To investigate temporal trends and health risks of SCCPs and MCCPs in breast milk in China, samples (n = 2020) were collected from urban and rural areas of 11 Chinese provinces in 2017 and mixed into 42 pooled samples. SCCPs and MCCPs were analyzed by two-dimensional gas chromatography with electron-capture negative-ionization mass spectrometry (GC × GC-ECNI-MS). The MCCP concentrations (median (range)) were 472 (94–1714) and 567 (211–1089) ng g⁻¹ lipid in urban and rural areas, respectively, which showed continuously rapidly increasing during 2007–2017. The SCCP concentrations (median (range)) were 393 (131–808) and 525 (139–1543) ng g⁻¹ lipid in urban and rural areas, respectively. The results showed SCCP levels decreased in urban areas between 2007 and 2017. Significant increases in MCCP/SCCP ratios might arise from extensive manufacturing and use of MCCPs. The median estimated dietary intake via breast milk in urban and rural samples were 1230 and 2510 ng kg⁻¹ d⁻¹, respectively, for SCCPs and 2150 and 1890 ng kg⁻¹ d⁻¹, respectively, for MCCPs. Preliminarily risk assessment showed that SCCPs posed a significant health risk to infants via breastfeeding. The high MCCP levels should also be of concern because of continuous growth and negative effect on infants. Correspondence analysis indicated congeners with higher carbon and chlorine numbers in dietary tend to accumulate in breast milk.
Afficher plus [+] Moins [-]Neonicotinoids from coated seeds toxic for honeydew-feeding biological control agents Texte intégral
2021
Calvo-Agudo, Miguel | Dregni, Jonathan | González-Cabrera, Joel | Dicke, Marcel | Heimpel, George E. | Tena, Alejandro
Neonicotinoids from coated seeds toxic for honeydew-feeding biological control agents Texte intégral
2021
Calvo-Agudo, Miguel | Dregni, Jonathan | González-Cabrera, Joel | Dicke, Marcel | Heimpel, George E. | Tena, Alejandro
Seed coating (‘seed treatment’) is the leading delivery method of neonicotinoid insecticides in major crops such as soybean, wheat, cotton and maize. However, this prophylactic use of neonicotinoids is widely discussed from the standpoint of environmental costs. Growing soybean plants from neonicotinoid-coated seeds in field, we demonstrate that soybean aphids (Aphis glycines) survived the treatment, and excreted honeydew containing neonicotinoids. Biochemical analyses demonstrated that honeydew excreted by the soybean aphid contained substantial concentrations of neonicotinoids even one month after sowing of the crop. Consuming this honeydew reduced the longevity of two biological control agents of the soybean aphid, the predatory midge Aphidoletes aphidimyza and the parasitic wasp Aphelinus certus. These results have important environmental and economic implications because honeydew is the main carbohydrate source for many beneficial insects in agricultural landscapes.
Afficher plus [+] Moins [-]Neonicotinoids from coated seeds toxic for honeydew-feeding biological control agents Texte intégral
2021
Calvo-Agudo, Miguel | Dregni, Jonathan | González-Cabrera, Joel | Dicke, Marcel | Heimpel, George E. | Tena, Alejandro
Seed coating (‘seed treatment’) is the leading delivery method of neonicotinoid insecticides in major crops such as soybean, wheat, cotton and maize. However, this prophylactic use of neonicotinoids is widely discussed from the standpoint of environmental costs. Growing soybean plants from neonicotinoid-coated seeds in field, we demonstrate that soybean aphids (Aphis glycines) survived the treatment, and excreted honeydew containing neonicotinoids. Biochemical analyses demonstrated that honeydew excreted by the soybean aphid contained substantial concentrations of neonicotinoids even one month after sowing of the crop. Consuming this honeydew reduced the longevity of two biological control agents of the soybean aphid, the predatory midge Aphidoletes aphidimyza and the parasitic wasp Aphelinus certus. These results have important environmental and economic implications because honeydew is the main carbohydrate source for many beneficial insects in agricultural landscapes.
Afficher plus [+] Moins [-]Neonicotinoids from coated seeds toxic for honeydew-feeding biological control agents Texte intégral
2021
Calvo-Agudo, Miguel | Dregni, Jonathan | González-Cabrera, Joel | Dicke, Marcel | Heimpel, George E. | Tena, Alejandro
Seed coating (‘seed treatment’) is the leading delivery method of neonicotinoid insecticides in major crops such as soybean, wheat, cotton and maize. However, this prophylactic use of neonicotinoids is widely discussed from the standpoint of environmental costs. Growing soybean plants from neonicotinoid-coated seeds in field, we demonstrate that soybean aphids (Aphis glycines) survived the treatment, and excreted honeydew containing neonicotinoids. Biochemical analyses demonstrated that honeydew excreted by the soybean aphid contained substantial concentrations of neonicotinoids even one month after sowing of the crop. Consuming this honeydew reduced the longevity of two biological control agents of the soybean aphid, the predatory midge Aphidoletes aphidimyza and the parasitic wasp Aphelinus certus. These results have important environmental and economic implications because honeydew is the main carbohydrate source for many beneficial insects in agricultural landscapes.
Afficher plus [+] Moins [-]Accelerated nitrogen consumption in sediment by Tubifex tubifex and its significance in eutrophic sediment remediation Texte intégral
2021
Yang, Jiqiang | Wan, Yun | Zhang, Miao | Cao, Zhifan | Leng, Xin | Zhao, Dehua | An, Shuqing
Sediment remediation in eutrophic aquatic ecosystems is imperative, but effective ecological measures are scarce. A pilot-scale trial investigated sediment remediation by the addition of Tubifex tubifex. The results showed that the addition of T. tubifex accelerated sediment organic matter (OM) and nitrogen (N) loss, with averages of 7.7% and 75.1% increased loss (IL) compared to treatments without T. tubifex in the 60-day experiment, respectively. The percentages of the increased in water to the IL in sediment were only 0.6%, 0.21%, 2.1% and 6.3% for NH₄⁺-N, NOₓ⁻-N, TN and COD, respectively, at the end of the experiment. The absolute abundances of the nitrifying genes AOA and AOB; the denitrifying genes napA, nirS, nirK, cnorB and nosZ; and the anaerobic ammonia oxidation gene anammox increased 2.3- to 11.0-fold with the addition of T. tubifex. Therefore, the addition of T. tubifex is an effective strategy for sediment remediation by accelerating OM and N loss in sediment without substantially increasing the water N concentration.
Afficher plus [+] Moins [-]Co-application of DMPSA and NBPT with urea mitigates both nitrous oxide emissions and nitrate leaching during irrigated potato production Texte intégral
2021
Souza, Emerson F.C. | Rosen, Carl J. | Venterea, Rodney T.
Potato (Solanum tuberosum L.) production in irrigated coarse-textured soils requires intensive nitrogen (N) fertilization which may increase reactive N losses. Biological soil additives including N-fixing microbes (NFM) have been promoted as a means to increase crop N use efficiency, though few field studies have evaluated their effects, and none have examined the combined use of NFM with microbial inhibitors. A 2-year study (2018–19) in an irrigated loamy sand quantified the effects of the urease inhibitor NBPT, the nitrification inhibitor DMPSA, NFM, and the additive combinations DMPSA + NBPT and DMPSA + NFM on potato performance and growing season nitrous oxide (N₂O) emissions and nitrate (NO₃⁻) leaching. All treatments, except a zero-N control, received diammonium phosphate at 45 kg N ha⁻¹ and split applied urea at 280 kg N ha⁻¹. Compared with urea alone, DMPSA + NBPT reduced NO₃⁻ leaching and N₂O emissions by 25% and 62%, respectively, and increased crop N uptake by 19% in one year, although none of the additive treatments increased tuber yields. The DMPSA and DMPSA + NBPT treatments had greater soil ammonium concentration, and all DMPSA-containing treatments consistently reduced N₂O emissions, compared to urea-only. Use of NBPT by itself reduced NO₃⁻ leaching by 21% across growing seasons and N₂O emissions by 37% in 2018 relative to urea-only. In contrast to the inhibitors, NFM by itself increased N₂O by 23% in 2019; however, co-applying DMPSA with NFM reduced N₂O emissions by ≥ 50% compared to urea alone. These results demonstrate that DMPSA can mitigate N₂O emissions in potato production systems and that DMPSA + NBPT can reduce both N₂O and NO₃⁻ losses and increase the N supply for crop uptake. This is the first study to show that combining a nitrification inhibitor with NFM can result in decreased N₂O emissions in contrast to unintended increases in N₂O emissions that can occur when NFM is applied by itself.
Afficher plus [+] Moins [-]Phenotypic responses to oil pollution in a poeciliid fish Texte intégral
2021
Santi, Francesco | Vella, Emily | Jeffress, Katherine | Deacon, Amy | Riesch, Rüdiger
Pollution damages ecosystems around the globe and some forms of pollution, like oil pollution, can be either man-made or derived from natural sources. Despite the pervasiveness of oil pollution, certain organisms are able to colonise polluted or toxic environments, yet we only have a limited understanding of how they are affected by it. Here, we analysed phenotypic responses to oil pollution in guppies (Poecilia reticulata) living in oil-polluted habitats across southern Trinidad. We analysed body-shape and life-history traits for 352 individuals from 11 independent populations, six living in oil-polluted environments (including the naturally oil-polluted Pitch Lake), and five stemming from non-polluted habitats. Based on theory of, and previous studies on, responses to environmental stressors, we predicted guppies from oil-polluted waters to have larger heads and shallower bodies, to be smaller, to invest more into reproduction, and to produce more but smaller offspring compared to guppies from non-polluted habitats. Contrary to most of our predictions, we uncovered strong population-specific variation regardless of the presence of oil pollution. Moreover, guppies from oil-polluted habitats were characterised by increased body size; rounder, deeper bodies with increased head size; and increased offspring size, when compared to their counterparts from non-polluted sites. This suggests that guppies in oil-polluted environments are not only subject to the direct negative effects of oil pollution, but might gain some (indirect) benefits from other concomitant environmental factors, such as reduced predation and reduced parasite load. Our results extend our knowledge of organismal responses to oil pollution and highlight the importance of anthropogenic pollution as a source of environmental variation. They also emphasise the understudied ecological heterogeneity of extreme environments.
Afficher plus [+] Moins [-]