Affiner votre recherche
Résultats 401-410 de 7,292
Ultraviolet light-activated peroxymonosulfate (UV/PMS) system for humic acid mineralization: Effects of ionic matrix and feasible application in seawater reverse osmosis desalination Texte intégral
2022
Alayande, Abayomi Babatunde | Hong, Seungkwan
The use of membrane-based technology has evolved into an important strategy for supplying freshwater from seawater and wastewater to overcome the problems of water scarcity around the world. However, the presence of natural organic matter (NOM), including humic substances affects the performance of the process. Here, we present a systematic report on the mineralization of humic acid (HA), as a model for NOM, in high concentration of salts using the ultraviolet light-activated peroxymonosulfate (UV/PMS) system as a potential alternative for HA elimination during membrane-based seawater desalination and water treatment processes. Effects of various parameters such as PMS concentration, solution type, pH, anions, and anion-cation matrix on HA mineralization were assessed. The results show that 100%, 78% and 58% of HA (2 mg/L TOC) were mineralized with rate constants of 0.085 min⁻¹, 0.0073 min⁻¹, and 0.0041 min⁻¹ after 180 min reaction time at pH 7 when 0.5 mM PMS was used in deionized water, sodium chloride solution (35,000 ppm) and synthetic seawater, respectively. The reduced efficiency under saline conditions was attributed to the presence of anions in the system that acted as sulfate and hydroxyl radicals’ scavengers. Furthermore, the safety of the treated synthetic seawater was evaluated by analyzing the residual transformed products. Overall, pretreatment with the UV/PMS system mitigated fouling on the RO membrane.
Afficher plus [+] Moins [-]Influencing factors and prediction of arsenic concentration in Pteris vittata: A combination of geodetector and empirical models Texte intégral
2022
Zeng, Weibin | Wan, Xiaoming | Lei, Mei | Gu, Gaoquan | Chen, Tongbin
Phytoextraction using hyperaccumulator, Pteris vittata, to extract arsenic (As) from soil has been applied to large areas to achieve an As removal rate of 18% per year. However, remarkable difference among different studies and field practices has led to difficulties in the standardization of phytoextraction technology. In this study, data on As concentration in P. vittata and related environmental conditions were collected through literature search. A conceptual framework was proposed to guide the improvement of phytoextraction efficiency in the field. The following influencing factors of As concentration in this hyperaccumulator were identified: total As concentration in soil, soil available As, organic matter in soil, total potassium (K) concentration in soil, and annual rainfall. The geodetection results show that the main factors that affect As concentration in P. vittata include soil organic matter (q = 0.75), soil available As (q = 0.67), total K (q = 0.54), and rainfall (q = 0.42). The predictive models of As concentration in P. vittata were established separately for greenhouse and field conditions through multivariate linear stepwise regression method. Under greenhouse condition, soil available As was the most important influencing factor and could explain 41.4% of As concentration in P. vittata. Two dominant factors were detected in the field: soil available As concentration and average annual rainfall. The combination of these two factors gave better prediction results with R² = 0.762. The establishment of the model might help predict phytoextraction efficiency and contribute to technological standardization. The strategies that were used to promote As removal from soil by P. vittata were summarized and analyzed. Intercropping with suitable plants or a combination of different measures (e.g., phosphate fertilizer and water retention) was recommended in practice to increase As concentration in P. vittata.
Afficher plus [+] Moins [-]Association of weather, air pollutants, and seasonal influenza with chronic obstructive pulmonary disease hospitalization risks Texte intégral
2022
Chong, Ka Chun | Chen, Yu | Chan, Emily Ying Yang | Lau, Steven Yuk Fai | Lam, Holly Ching Yu | Wang, Bin | Goggins, William Bernard | Ran, Jinjun | Zhao, Shi | Mohammad, Kirran N. | Wei, Yuchen
The influences of weather and air pollutants on chronic obstructive pulmonary disease (COPD) have been well-studied. However, the heterogeneous effects of different influenza viral infections, air pollution and weather on COPD admissions and re-admissions have not been thoroughly examined. In this study, we aimed to elucidate the relationships between meteorological variables, air pollutants, seasonal influenza, and hospital admissions and re-admissions due to COPD in Hong Kong, a non-industrial influenza epicenter. A total number of 507703 hospital admissions (i.e., index admissions) and 301728 re-admission episodes (i.e., episodes within 30 days after the previous discharge) for COPD over 14 years (1998–2011) were obtained from all public hospitals. The aggregated weekly numbers were matched with meteorological records and outdoor air pollutant concentrations. Type-specific and all-type influenza-like illness positive (ILI+) rates were used as proxies for influenza activity. Generalized additive models were used in conjunction with distributed-lag non-linear models to estimate the associations of interest. According to the results, high concentrations of fine particulate matter, oxidant gases, and cold weather were strong independent risk factors of COPD outcomes. The cumulative adjusted relative risks exhibited a monotone increasing trend except for ILI+ B, and the numbers were statistically significant over the entire observed range of ILI+ total and ILI+ A/H3N2 when the reference rate was zero. COPD hospitalization risk from influenza infection was higher in the elderly than that in the general population. In conclusion, our results suggest that health administrators should impose clean air policies, such as strengthening emissions control on petrol vehicles, to reduce pollution from oxidant gases and particulates. An extension of the influenza vaccination program for patients with COPD may need to be encouraged: for example, vaccination may be included in hospital discharge planning, particularly before the winter epidemic.
Afficher plus [+] Moins [-]Metabolomics as a tool for in situ study of chronic metal exposure in estuarine invertebrates Texte intégral
2022
Hillyer, Katie E. | Raes, Eric | Karsh, Kristen | Holmes, Bronwyn | Bissett, Andrew | Beale, David J.
Estuaries are subject to intense human use globally, with impacts from multiple stressors, such as metal contaminants. A key challenge is extending beyond traditional monitoring approaches to understand effects to biota and system function. To explore the metabolic effects of complex metal contaminants to sediment dwelling (benthic) fauna, we apply a multiple-lines-of-evidence approach, coupling environmental monitoring, benthic sampling, total metals analysis and targeted metabolomics.We characterise metabolic signatures of metal exposure in three benthic invertebrate taxa, which differed in distribution across sites and severity of metal exposure: sipunculid (very high), amphipod (high), maldanid polychaete (moderate). We observed sediment and tissue metal loads far exceeding sediment guidelines where toxicity-related adverse effects may be expected, for metals including, As, Cd, Pb, Zn and Hg.Change in site- and taxa-specific metabolite profiles was highly correlated with natural environmental drivers (sediment total organic carbon and water temperature). At the most metal influenced sites, metabolite variation was also correlated with sediment metal loads. Using supervised multivariate regression, taxa-specific metabolic signatures of increased exposure and possibility of toxic effects were characterised against multiple reference sites. Metabolic signatures varied according to each taxon and degree of metal exposure, but primarily indicated altered cysteine and methionine metabolism, metal-binding and elimination (lysosomal) activity, coupled to change in complex biosynthesis pathways, responses to oxidative stress, and cellular damage.This novel multiple-lines-of-evidence approach combining metabolomics with traditional environmental monitoring, enabled detection and characterisation of chronic metal exposure effects in situ in multiple invertebrate taxa. With capacity for application to rapid and effective monitoring of non-model species in complex environments, these approaches are critical for improved assessment and management of systems that are increasingly subject to anthropogenic drivers of change.
Afficher plus [+] Moins [-]Plastisphere development in relation to the surrounding biotic communities Texte intégral
2022
Žuna Pfeiffer, Tanja | Špoljarić Maronić, Dubravka | Stević, Filip | Galir Balkić, Anita | Bek, Nikolina | Martinović, Ana | Mandir, Tomislav | Nikolašević, Rahela | Janjić, Doris
To study the early colonization processes, polyethylene terephthalate (PET) microfragments were immersed in Lake Sakadaš and the Drava River and sampled weekly together with the surrounding biotic communities - phytoplankton, zooplankton, epixylon in the lake and epilithon in the river. At the end of the study, a rise in water level occurred in the river, which altered the environmental conditions and plankton communities. In studied environments, all of the sampled biotic communities were diverse and abundant. Plastispheres formed in both waters by the seventh day of incubation and developed rapidly, reaching a peak in abundance on the last day of the study. Initial colonization was supported equally by planktonic and periphytic taxa in both environments, but after initial settlement, plastisphere assemblages were affected differently in the river and lake. This study suggests that PET microfragments are a suitable substrate for microphyte settlement and may provide an important pathway for their transport in dynamic freshwater floodplains and river systems.
Afficher plus [+] Moins [-]Phase-specific stable isotope fractionation effects during combined gas-liquid phase exchange and biodegradation Texte intégral
2022
Khan, Ali M. | Gharasoo, Mehdi | Wick, Lukas Y. | Thullner, Martin
Stable isotope fractionation of toluene under dynamic phase exchange was studied aiming at ascertaining the effects of gas-liquid partitioning and biodegradation of toluene stable isotope composition in liquid-air phase exchange reactors (Laper). The liquid phase consisted of a mixture of aqueous minimal media, a known amount of a mixture of deuterated (toluene-d) and non-deuterated toluene (toluene-h), and bacteria of toluene degrading strain Pseudomonas putida KT2442. During biodegradation experiments, the liquid and air-phase concentrations of both toluene isotopologues were monitored to determine the observable stable isotope fractionation in each phase. The results show a strong fractionation in both phases with apparent enrichment factors beyond −800‰. An offset was observed between enrichment factors in the liquid and the gas phase with gas-phase values showing a stronger fractionation in the gas than in the liquid phase. Numerical simulation and parameter fitting routine was used to challenge hypotheses to explain the unexpected experimental data. The numerical results showed that either a very strong, yet unlikely, fractionation of the phase exchange process or a – so far unreported – direct consumption of gas phase compounds by aqueous phase microorganisms could explain the observed fractionation effects. The observed effect can be of relevance for the analysis of volatile contaminant biodegradation using stable isotope analysis in unsaturated subsurface compartments or other environmental compartment containing a gas and a liquid phase.
Afficher plus [+] Moins [-]Macroalgae metal-biomonitoring in Antarctica: Addressing the consequences of human presence in the white continent Texte intégral
2022
Lavergne, Céline | Celis-Plá, Paula S.M. | Chenu, Audran | Rodríguez-Rojas, Fernanda | Moenne, Fabiola | Díaz, María José | Abello-Flores, María Jesús | Díaz, Patricia | Garrido, Ignacio | Bruning, Paulina | Verdugo, Marcelo | Lobos, M Gabriela | Sáez, Claudio A.
Marine ecosystems in the Arctic and Antarctica were once thought pristine and away from important human influence. Today, it is known that global processes as atmospheric transport, local activities related with scientific research bases, military and touristic maritime traffic, among others, are a potential source of pollutants. Macroalgae have been recognized as reliable metal-biomonitoring organisms due to their accumulation capacity and physiological responses. Metal accumulation (Al, Cd, Cu, Fe, Pb, Zn, Se, and Hg) and photosynthetic parameters (associated with in vivo chlorophyll a fluorescence) were assessed in 77 samples from 13 different macroalgal species (Phaeophyta; Chlorophyta; Rhodophyta) from areas with high human influence, nearby research and sometimes military bases and a control area, King George Island, Antarctic Peninsula. Most metals in macroalgae followed a pattern influenced by rather algal lineage than site, with green seaweeds displaying trends of higher levels of metals as Al, Cu, Cr and Fe. Photosynthesis was also not affected by site, showing healthy organisms, especially in brown macroalgae, likely due to their great dimensions and morphological complexity. Finally, data did not demonstrate a relationship between metal accumulation and photosynthetic performance, evidencing low anthropogenic-derived impacts associated with metal excess in the area. Green macroalgae, especially Monostroma hariotti, are highlighted as reliable for further metal biomonitoring assessments. In the most ambitious to date seaweed biomonitoring effort conducted towards the Austral pole, this study improved by 91% the overall knowledge on metal accumulation in macroalgae from Antarctica, being the first report in species as Sarcopeltis antarctica and Plocamium cartilagineum. These findings may suggest that human short- and long-range metal influence on Antarctic coastal ecosystems still remains under control.
Afficher plus [+] Moins [-]Role of environmental stresses in elevating resistance mutations in bacteria: Phenomena and mechanisms Texte intégral
2022
Wang, Dali | Ning, Qing | Deng, Ziqing | Zhang, Meng | Yau, Ching
Mutations are an important origin of antibiotic resistance in bacteria. While there is increasing evidence showing promoted resistance mutations by environmental stresses, no retrospective research has yet been conducted on this phenomenon and its mechanisms. Herein, we summarized the phenomena of stress-elevated resistance mutations in bacteria, generalized the regulatory mechanisms and discussed the environmental and human health implications. It is shown that both chemical pollutants, such as antibiotics and other pharmaceuticals, biocides, metals, nanoparticles and disinfection byproducts, and non-chemical stressors, such as ultraviolet radiation, electrical stimulation and starvation, are capable of elevating resistance mutations in bacteria. Notably, resistance mutations are more likely to occur under sublethal or subinhibitory levels of these stresses, suggesting a considerable environmental concern. Further, mechanisms for stress-induced mutations are summarized in several points, namely oxidative stress, SOS response, DNA replication and repair systems, RpoS regulon and biofilm formation, all of which are readily provoked by common environmental stresses. Given bacteria in the environment are confronted with a variety of unfavorable conditions, we propose that the stress-elevated resistance mutations are a universal phenomenon in the environment and represent a nonnegligible risk factor for ecosystems and human health. The present review identifies a need for taking into account the pollutants’ ability to elevate resistance mutations when assessing their environmental and human health risks and highlights the necessity of including resistance mutations as a target to prevent antibiotic resistance evolution.
Afficher plus [+] Moins [-]Feeding and contaminant patterns of sub-arctic and arctic ringed seals: Potential insight into climate change-contaminant interactions Texte intégral
2022
Facciola, Nadia | Houde, Magali | Muir, Derek C.G. | Ferguson, Steven H. | McKinney, Melissa A.
To provide insight into how climate-driven diet shifts may impact contaminant exposures of Arctic species, we compared feeding ecology and contaminant concentrations in ringed seals (Pusa hispida) from two Canadian sub-Arctic (Nain at 56.5°N, Arviat at 61.1°N) and two Arctic sites (Sachs Harbour at 72.0 °N, Resolute Bay at 74.7 °N). In the sub-Arctic, empirical evidence of changing prey fish communities has been documented, while less community change has been reported in the Arctic to date, suggesting current sub-Arctic conditions may be a harbinger of future Arctic conditions. Here, Indigenous partners collected tissues from subsistence-harvested ringed seals in 2018. Blubber fatty acids (FAs) and muscle stable isotopes (δ¹⁵N, δ¹³C) indicated dietary patterns, while measured contaminants included heavy metals (e.g., total mercury (THg)), legacy persistent organic pollutants (e.g., dichlorodiphenyltrichloroethanes (DDTs)), polybrominated diphenyl ethers (PBDEs), and per-/polyfluoroalkyl substances (PFASs). FA signatures are distinct between sub-Arctic and Resolute Bay seals, likely related to higher consumption of southern prey species including capelin (Mallotus villosus) in the sub-Arctic but on-going feeding on Arctic species in Resolute Bay. Sachs Harbour ringed seals show FA overlap with all locations, possibly consuming both southern and endemic Arctic species. Negative δ¹³C estimates for PFAS models suggest that more pelagic, sub-Arctic type prey (e.g., capelin) increases PFAS concentrations, whereas the reverse occurs for, e.g., THg, ΣPBDE, and ΣDDT. Inconsistent directionality of δ¹⁵N estimates in the models likely reflects baseline isotopic variation not trophic position differences. Adjusting for the influence of diet suggests that if Arctic ringed seal diets become more like sub-Arctic seals due to climate change, diet-driven increases may occur for newer contaminants like PFASs, but not for more legacy contaminants. Nonetheless, temporal trends studies are still needed, as are investigations into the potential confounding influence of baseline isotope variation in spatial studies of contaminants in Arctic biota.
Afficher plus [+] Moins [-]Impact of simulating real microplastics on toluene removal from contaminated soil using thermally enhanced air injection Texte intégral
2022
This paper investigated the impacts of various real microplastics (MPs), i.e., polyethylene (PE) and polyethylene terephthalate (PET) with different sizes (1000–2000 and 100–200 μm) and different dosages (0.5 and 5% on a dry weight basis), on the toluene removal during the thermally enhanced air injection treatment. First, microscopic tests were carried out to determine the MPs' microstructure and behavior. The PE was mainly a small block, and PET appeared filamentous and sheeted with a larger slenderness ratio. Second, the interactions between MPs and toluene-contaminated soils were revealed by batch adsorption equilibrium experiments and low-field magnetic resonance. The morphological differences and dosage of the MPs impacted soils’ total porosity (variation range: 39.2–42.7%) and proportion of the main pores (2–200 μm). Third, the toluene removal during the air injection consisted of compaction, rapid growth, rapid reduction, and tailing stages, and the MPs were regarded as an emerging solid state to affect these removal stages. The final cumulative toluene concentrations of soil-PET mixtures were influenced by total porosity, and those of soil-PE mixtures were controlled by total porosity (influence weight: 0.67) and adsorption capacity (influence weight: 0.33); meanwhile, a self-built comprehensive coefficient of MPs can reflect the relationship between them and cumulative concentrations (correlation coefficient: 0.783).
Afficher plus [+] Moins [-]