Affiner votre recherche
Résultats 401-410 de 506
An Overview of Anaerobic Digestion of Cow Dung
2024
V. M. Nekhubvi
In the past decade, governments and development agencies have contributed significantly to society through anaerobic digestion technology (ADT). Anaerobic digestion technology (ADT) has become an important tool in the fight against global poverty and environmental issues, leading to positive change in communities around the world. The technology works as a wet or dry process, depending on its classification. The process is complex and yields multiple benefits, such as creating a natural fertilizer that can be used to help crops grow, as well as generating renewable energy sources. It is common knowledge that many household-sized digesters installed in different areas are one-stage digesters. One-stage digesters do not require a separate pre-treatment stage before the digestion process. This makes them simpler and more cost-effective to install and operate than traditional two-stage digesters. Thus, some drawbacks are associated with these systems since they feed on just one type of feedstock. Many researchers fail to adequately address interactions critical to ADT’s operation, including interactions among growth factors and operating parameters. In a single-stage and one-substrate digester, researchers commonly neglect to study the digester feeding and operational conditions. Anaerobic digestion was the subject of this review, covering research conducted between 2001 and 2022. The study identified a significant drawback associated with mono-digestion and single-stage digestion. The findings illustrate that mono-substrate and single-stage digestion are worthwhile approaches, even though they have their challenges. However, adding a further digestion stage can significantly improve biogas production.
Afficher plus [+] Moins [-]Analysis and Characterization of Municipal Solid Wastes Generated in Ifugao State University Potia Campus: A Basis For Planning of Waste Management
2024
P. Latugan, J. J. Carabacan, G. Bonicillo, J. Cayog, M. Q. Eyawa, M. T. Cairel and J. M. Ngohayon
The end of the COVID-19 pandemic resulted in the total return of students and employees in Ifugao State University Potia Campus, a higher education institution located in Potia, Alfonso Lista, Ifugao, Philippines. However, the return of the pre-pandemic operations on campus caused problems in managing the generated municipal solid wastes. Hence, an analysis and characterization of the generated municipal solid wastes was conducted to determine important data that can be used for future waste management planning. The generated municipal solid wastes were gathered from the various waste generators within the campus for five consecutive days. The total generated municipal solid waste on the campus was about 140.10 kg.day-1, most of which was contributed by the canteens (20.86%). The generated municipal solid wastes were dominated by biodegradable waste (48.65%) and recyclable waste (37.26%). In addition, most of the generated municipal solid wastes were related to people’s food and beverage consumption behavior. The total volume of the MSW generated daily was about 5.647 m3. It is recommended that the campus create and enforce its waste management plan to specifically address the aforementioned characteristics of the generated municipal solid wastes.
Afficher plus [+] Moins [-]Mapping and Quantifying Integrated Land Degradation Status of Goa Using Geostatistical Approach and Remote Sensing Data
2024
V. G. Prabhu Gaonkar, F. M. Nadaf and Vikas Kapale
Globally, land degradation is becoming a grave concern. Over the years, conditions such as drought, extreme weather events, pollution, changes in land use land cover, and desertification have intensified and led to land degradation, affecting both ecological and economic processes. Equally, during the last two centuries, population and urbanization have amplified manifold and increased the demand for additional food and shelter, resulting in alteration in land use land cover, over-grazing, and over-cultivation, loss of nutrient-rich surface soil, greater runoff from the more impermeable subsoil, and reduced water availability. Geographically, Goa is a highly diversified state. It is sandwiched between the West Coast and the Western Ghats. The state is blessed with beaches, mangroves, backwaters, wetlands, wildlife sanctuaries, evergreen forests, barren lands, and other vital ecosystems. The State of Goa, on average, receives more than 3000 millimeters of rainfall annually with high surface runoff. Using both primary and secondary data, this study sought to investigate and quantify the state’s land degradation. Secondary data came from satellites and other sources, while primary data came from field observation and ground truthing. Land degradation factors related to soil loss and the spatial pattern of soil erosion are predicted and evaluated using the Revised Universal Soil Loss Equation (RUSLE) method. Landsat-8 OLI-TIRS images were utilized to decide land use and cover (C factor), while DEM information was utilized to assess (LS factor). A soil map and rainfall data were collected to acquire a better understanding of soil erodibility (K factor) and rainfall erosivity (R factor). The kriging interpolation technique was used to gain a deeper comprehension of land degradation.The purpose of this paper is to comprehend the concept of integrated land degradation and how it affects the environment of Goa. Using remote sensing data and geostatistical methods, the study creates a comprehensive map of land degradation in the region by identifying and analyzing the various forms of land degradation in Goa. The paper also looks at how rainfall and the amount of land cover affect the rate of soil erosion in Goa. According to the findings, intense rainfall makes the eastern part of Goa particularly susceptible to soil erosion, and bare soil has a greater potential for erosion than vegetated land. The paper concludes that comprehensive land degradation mapping can be a useful tool for developing efficient land management strategies to preserve soil and encourage sustainable development in the region.
Afficher plus [+] Moins [-]Water Resource Impacts of Irrigation: The Case of the Main Irrigation Canal from the M’Pourie Plain to Rosso in Mauritania
2024
Mewgef El Ezza dite Hanane Djieh Cheikh Med Fadel B. A. Dick, E. C. S’Id, M. B. Ammar, Y. M. Sidi, L. S. Mohamed, A. Semesdy, M. L. Yehdhih and M. Fekhaoui
An important factor in determining agricultural production is the availability of irrigation water in the main canal of the M’Pourie plain. This factor affects both the intensification of crops and the size of the irrigation areas. The main Senegal River canal in Rosso, Mauritania, runs across the Plaine of M’Pourie. This study aims to assess the physicochemical quality of the water used for irrigation and agriculture in the main irrigation canal on the M’Pourie plain. The measurements were made from 2021 to 2022, and the following physical and chemical parameters were monitored: pH, temperature, electrical conductivity, salt content, calcium, magnesium, sodium, and potassium; ammonium bicarbonate; chloride; nitrite; nitrate; nitrogen; sulfate; and sodium adsorption ratio (SAR). These measurements were analyzed using volumetric, spectroscopic, and spectrophotometric methods. After conducting statistical analysis and comparing the results with Moroccan quality standards for surface water utilized in irrigation, it has been discovered that the average pH value is 7.51, indicating a neutral state. However, the average nitrite and ammonium values exceed Moroccan standards at 5.16 mg.L-1 and 0.41 mg.L-1, respectively. The water’s low mineralization is attributed to its low electrical conductivity, with an average of 52.2 μS.cm-1. Based on the analysis of the Senegal River water used for irrigation in the M’Pourie plain, it has been determined that its sodium adsorption ratio and electrical conductivity classify it as belonging to class C1S1. This indicates that the water has low salinity and is excellent for irrigation, with a low risk of alkalinization.
Afficher plus [+] Moins [-]Farmers’ Perception and Adaptation Strategies Towards Climate Change: A Village Level Study in India
2024
Dharma Teja Ratakonda, Ajit Kumar Dash and Amritkant Mishra
The present study attempted to observe the perception and adaptation strategies of farmers in the context of climate change. It observes that the majority of the farmers are aware of climate change and understand that they are facing problems due to it. The major problems faced by the farmers are the long duration of dryness due to lack of rainfall, weed pressure, very high temperatures, and crop disease. However, farmers are not very aware of technological adaptation and have changed the cropping time due to changes in the time of monsoon. The study recommends that there is a need for intensive micro and macro policy initiatives in terms of modern green sustainable technology along with awareness and skill development of the farmers. The government should also focus more on policy initiatives for sustainable agricultural practices in line with sustainable development goals.
Afficher plus [+] Moins [-]Mapping and Monitoring of Land Use/Land Cover Transformation Using Geospatial Techniques in Varanasi City Development Region, India
2024
Atul K. Tiwari, Anindita Pal and Rolee Kanchan
Assessing the dynamics and patterns of Land Use and Land Cover (LULC) and its transformation is an important practice of urban planners and environmentalists for a variety of applications, including land management, urban climate modeling, and sustainability of any urban region. Monitoring changes in LULC using geospatial techniques can help to identify areas at risk for indefensible land use, low-grade environment, and especially for sustainable urban planning. This study aims to analyze the changing pattern, dynamics, and alteration of LULC using Google Earth Engine (GEE) and Machine Learning Applications for the years 1991, 2001, 2011, and 2022 in the Varanasi City Development Region (VCDR). The LULC classification was divided into seven classes using random forest classification, and Landsat-5(TM) and 9(OLI-2) satellite data were used. Saga GIS has been utilized for the detection of LULC change during the 1991-2022 period. For validation of classification results, accuracy assessment was estimated using error matrices and through user, producer, and overall accuracy estimation. The Kappa statistics were applied for the reliability of the accuracy assessment result. As a result, the built-up area increased by 507.8 percent, and other classes like agricultural, barren, fallow land, and vegetation cover rapidly declined and altered into concrete areas over the period. Water bodies and river sand classes have been slightly converted into different classes. The finding explains that 114.8 km2 of fertile agricultural land, 14.81 km2 barren land, and 12.93 km2 of vegetation cover transformed into impervious surface, which is unsustainable and causes various problems like food scarcity, environmental degradation, and low quality of urban life. This study can be a useful guide for urban planners, academicians, and policymakers by providing a scientific background for sustainable urban planning and management of VCDR and other cities as well.
Afficher plus [+] Moins [-]Hunting Resource Management by Population Size Control by Remote Sensing Using an Unmanned Aerial Vehicle
2024
S. Ivanova and A. Prosekov
The study was carried out on the territory of the Kemerovo region-Kuzbass (Western Siberia, Russia). The purpose of the study was to obtain information on the species diversity and population of big-game animals. The monitoring was carried out on the forest territories of the region’s administrative districts. In the course of remote sensing using an unmanned aerial vehicle, the presence of all types of animals under consideration, except for the bear, was recorded. The deviation of the population number determined using the traditional method of digital technologies varied up to 50%. It was established that environmental measures organized and carried out by the regional administration and hunting farms improved the situation and stabilized the population of the main group of game animals. It was found that when using a sufficiently high sensitivity of the thermal imager (the used thermal imager had a very high sensitivity class ≤ 60 mK at 300 K), long-haired animals, which are characterized by a lower intensity of thermal radiation (for example, wolves) are identified and recognized in the images. The larger the animal and the worse the thermal insulation layer (wool or feathers), the easier it is to identify it in infrared images and the lower the sensitivity requirements of thermal imagers. The ability to recognize and record smaller animals and birds requires additional research on existing technologies. Our research has confirmed the validity of digital remote monitoring methods for managing the wildlife of hunting farms and nature conservation areas of the Siberian Taiga territories.
Afficher plus [+] Moins [-]Threshold Effect of Trade on Climate Change in South Africa
2024
Teboho J. Mosikari and Kesaobaka Mmelesi
The relationship between trade and climate change is not a simple linear relationship. In this paper, using the threshold regression model, we estimated the effect of trade on climate change in South Africa. The paper applied the LM test to examine the nonlinear inference approach to test whether nonlinearity existed and if the threshold model was relevant to the study. The results show that when energy use is set as the threshold variable, the relationship between trade and climate change measured as methane is U-shaped. Also, in other models of GHG as climate change indicators, the results show that the effect of trade on climate change is not dynamic. This result supports the idea that high and low trade effects may have different impacts on climate change indicators. It is, therefore, recommended that all exporters in South Africa resort to more innovative environmental mechanisms to reduce the contribution to climate. The suggestion for future studies is to consider exports of different sectors to climate change. This approach will avoid the generalization of exporting firms as the worst emitters.
Afficher plus [+] Moins [-]Extraction of Environment-Friendly Biodegradable Poly-Hydroxy Butyrate Using Novel Hydrodynamic Cavitation Method
2024
A. A. Lad, V. D. Gaikwad, S. V. Gaikwad, A. D. Kulkarni and S. P. Kanekar
Polyhydroxy butyrate (PHB) is one of the best environment-friendly bioplastic alternatives for petroleum-based plastic due to its biodegradability. However, it has less commercial popularity owing to the high cost of downstream processing that involves repeated centrifugation and the use of costly harmful solvents, as well as a labor-intensive process. Hydrodynamic Cavitation (HC) offers easy and simple mechanisms for downstream processing. Also, biopolymer extracted for haloarchea show an advantage of least contamination under the halophilic condition on an industrial level. In this paper, a haloarchaeal consortium producing biopolymer isolated from commercial rock salt has been subjected to HC as well as distilled water lysis. A maximum of 23 g.L-1 PHB was extracted in 40 min run with 50 passes and 0.10 cavitation number at 3.9 bar pressure. The extracted biopolymer was characterized and was found to be PHB. Comparative analysis shows that HC results in a substantial reduction in the downstream processing time. Moreover, it has double the efficiency of PHB extraction as compared to the distilled water lysis method. This paper reports the HC process as a techno-commercial alternative to industrial PHB extraction.
Afficher plus [+] Moins [-]Analysis of the Phytochemical Composition of Leaves of Six Superior Salt-Tolerant Mulberry Germplasm Grown Under Coastal Saline Soils of South 24 Parganas District of West Bengal, India
2024
Ritwik Acharya, Debnirmalya Gangopadhyay, S. Rehan Ahmad and Phalguni Bhattacharyya
The nutritive value of mulberry leaves makes it the only food of silkworms (Bombyx mori L.). It is recorded that 6.73 million hectares of area are affected by salinity and sodicity stresses covering various states of the country, which is becoming one of the major threats to popularizing sericulture in India. In the present study, chlorophyll, protein, catalase, peroxidase, and superoxide dismutase content of leaves of six mulberry germplasm viz., English Black, Kolitha-3, C776, Rotundiloba, BC259, and S1 grown under coastal saline soils of South 24 Parganas district of West Bengal, India was investigated. Results demonstrated a sharp decrease in the chlorophyll (2.35 to1.19 mg.g FW-1) and protein (30.10 to 15.20 mg.g FW-1) contents of leaves of all the mulberry germplasm with increasing soil salinity (1.60 to 22.70 dS.m-1). On the contrary, the number of stress-related antioxidant enzymes like catalase, peroxidases, and superoxide dismutase increased from 1.15 to 5.43, 1.43 to 4.76, and 8.65 to 25.15 g-1 FW.min-1, respectively. Overall, the field study indicated the superiority of Kolitha-3 and C776 grown in Canning (Canning I and II), Basanti, Namkhana, Kakdwip, and Sagar blocks of coastal regions of South 24 Parganas. The study deals with issues of the utilization of scarce land promoting income-generating avenues like sericulture in saline areas.
Afficher plus [+] Moins [-]