Affiner votre recherche
Résultats 421-430 de 3,991
Correlations and adsorption mechanisms of aromatic compounds on a high heat temperature treated bamboo biochar
2016
Yang, Kun | Yang, Jingjing | Jiang, Yuan | Wu, Wenhao | Lin, Daohui
Adsorption of aromatic compounds, including polycyclic aromatic hydrocarbons, nitrobenzenes, phenols, and anilines, on a bamboo biochar produced at 700 °C (Ba700) was investigated with the mechanism discussion by isotherm fitting using the Polanyi-theory based Dubinin–Ashtakhov (DA) model. Correlations of adsorption capacity (Q0) of organic compounds with their molecular sizes and melting points, as well as correlations of adsorption affinity (E) with their solvatochromic parameters (i.e., π* and αm), on the biochar, were developed and indicating that adsorption is captured by the pore filling mechanism and derived from the hydrophobic effects of organic compounds and the forming of π-π electron donor-acceptor (EDA) interactions and hydrogen bonding interactions of organic molecules with surface sites of the biochar. The effects of organic molecular sizes and melting points on adsorption capacity are ascribed to the molecular sieving effect and the packing efficiency of the organic molecules in the biochar pores, respectively. These correlations can be used to quantitatively estimate the adsorption of organic compounds on biochars from their commonly physicochemical properties including solvatochromic parameters, melting points and molecular cross-sectional area. The prediction using these correlations is important for assessing the unknown adsorption behaviors of new organic compounds and also helpful to guide the surface modification of biochars and make targeted selection in the environmental applications of biochars as adsorbents.
Afficher plus [+] Moins [-]On the association between outdoor PM2.5 concentration and the seasonality of tuberculosis for Beijing and Hong Kong
2016
You, Siming | Tong, Yen Wah | Neoh, Koon Gee | Dai, Yanjun | Wang, Chi-Hwa
Tuberculosis (TB) is still a serious public health problem in various countries. One of the long-elusive but critical questions about TB is what the risk factors are and how they contribute for its seasonality. An ecologic study was conducted to examine the association between the variation of outdoor PM2.5 concentration and the TB seasonality based on the monthly TB notification and PM2.5 concentration data of Hong Kong and Beijing. Both descriptive analysis and Poisson regression analysis suggested that the outdoor PM2.5 concentration could be a potential risk factor for the seasonality of TB disease. The significant relationship between the number of TB cases and PM2.5 concentration was not changed when regression models were adjusted by sunshine duration, a potential confounder. The regression analysis showed that a 10 μg/m3 increase in PM2.5 concentrations during winter is significantly associated with a 3% (i.e. 18 and 14 cases for Beijing and Hong Kong, respectively) increase in the number of TB cases notified during the coming spring or summer for both Beijing and Hong Kong. Three potential mechanisms were proposed to explain the significant relationship: (1) increased PM2.5 exposure increases host's susceptibility to TB disease by impairing or modifying the immunology of the human respiratory system; (2) increased indoor activities during high outdoor PM2.5 episodes leads to an increase in human contact and thus the risk of TB transmission; (3) the seasonal change of PM2.5 concentration is correlated with the variation of other potential risk factors of TB seasonality. Preliminary evidence from the analysis of this work favors the first mechanism about the PM2.5 exposure-induced immunity impairment. This work adds new horizons to the explanation of the TB seasonality and improves our understanding of the potential mechanisms affecting TB incidence, which benefits the prevention and control of TB disease.
Afficher plus [+] Moins [-]Control of mercury emissions from stationary coal combustion sources in China: Current status and recommendations
2016
Hu, Yuanan | Cheng, Hefa
Coal burning in power plants and industrial boilers is the largest combustion source of mercury emissions in China. Together, power plants and industrial boilers emit around 250 tonnes of mercury each year, or around half of atmospheric mercury emissions from anthropogenic sources in the country. Power plants in China are generally equipped with multi-pollutant control technologies, which offer the co-benefit of mercury removal, while mercury-specific control technologies have been installed in some facilities. In contrast, most industrial boilers have only basic or no flue gas cleaning. A combination of measures, including energy conservation, coal switching and blending, reducing the mercury contents of coals through washing, combustion controls, and flue gas cleaning, can be used to reduce mercury emissions from these stationary combustion sources. More stringent emission standards for the major air pollutants from coal-fired power plants and industrial boiler, along with standards for the previously unregulated mercury, were implemented recently, which is expected to bring significant reduction in their mercury emissions through the necessary upgrades of multi-pollutant and mercury-specific control technologies. Meanwhile, strong monitoring capacity and strict enforcement are necessary to ensure that the combustion sources operate in compliance with the new emission standards and achieve significant reduction in the emissions of mercury and other air pollutants.
Afficher plus [+] Moins [-]Effect of chemical stress and ultraviolet radiation in the bacterial communities of zebrafish embryos
2016
Oliveira, Jacinta M.M. | Almeida, Ana Rita | Pimentel, Tânia | Andrade, Thayres S. | Henriques, Jorge F. | Soares, Amadeu M.V.M. | Loureiro, Susana | Gomes, Newton C.M. | Domingues, Inês
This study aimed to assess the effect of ultraviolet radiation (UVR) and chemical stress (triclosan-TCS; potassium dichromate-PD; prochloraz-PCZ) on bacterial communities of zebrafish (Danio rerio) embryos (ZEBC). Embryos were exposed to two UVR intensities and two chemical concentrations not causing mortality or any developmental effect (equivalent to the No-Observed-Effect Concentration-NOEC; NOEC diluted by 10-NOEC/10). Effects on ZEBC were evaluated using denaturing gradient gel electrophoresis (DGGE) and interpreted considering structure, richness and diversity. ZEBC were affected by both stressors even at concentrations/doses not affecting the host-organism (survival/development). Yet, some stress-tolerant bacterial groups were revealed. The structure of the ZEBC was always affected, mainly due to xenobiotic presence. Richness and diversity decreased after exposure to NOEC of PD. Interactive effects occurred for TCS and UVR. Aquatic microbiota imbalance might have repercussions for the host/aquatic system, particularly in a realistic scenario/climate change perspective therefore, future ecotoxicological models should consider xenobiotics interactions with UVR.
Afficher plus [+] Moins [-]Exposure of marine mussels Mytilus spp. to polystyrene microplastics: Toxicity and influence on fluoranthene bioaccumulation
2016
Paul Pont, Ika | Lacroix, Camille | González Fernández, Carmen | Hégaret, Hélène | Lambert, Christophe | Le Goïc, Nelly | Frère, Laura | Cassone, Anne-Laure | Sussarellu, Rossana | Fabioux, Caroline | Guyomarch, Julien | Albentosa, Marina | Huvet, Arnaud | Soudant, Philippe
The effects of polystyrene microbeads (micro-PS; mix of 2 and 6 μm; final concentration: 32 μg L−1) alone or in combination with fluoranthene (30 μg L−1) on marine mussels Mytilus spp. were investigated after 7 days of exposure and 7 days of depuration under controlled laboratory conditions. Overall, fluoranthene was mostly associated to algae Chaetoceros muelleri (partition coefficient Log Kp = 4.8) used as a food source for mussels during the experiment. When micro-PS were added in the system, a fraction of FLU transferred from the algae to the microbeads as suggested by the higher partition coefficient of micro-PS (Log Kp = 6.6), which confirmed a high affinity of fluoranthene for polystyrene microparticles. However, this did not lead to a modification of fluoranthene bioaccumulation in exposed individuals, suggesting that micro-PS had a minor role in transferring fluoranthene to mussels tissues in comparison with waterborne and foodborne exposures. After depuration, a higher fluoranthene concentration was detected in mussels exposed to micro-PS and fluoranthene, as compared to mussels exposed to fluoranthene alone. This may be related to direct effect of micro-PS on detoxification mechanisms, as suggested by a down regulation of a P-glycoprotein involved in pollutant excretion, but other factors such as an impairment of the filtration activity or presence of remaining beads in the gut cannot be excluded. Micro-PS alone led to an increase in hemocyte mortality and triggered substantial modulation of cellular oxidative balance: increase in reactive oxygen species production in hemocytes and enhancement of anti-oxidant and glutathione-related enzymes in mussel tissues. Highest histopathological damages and levels of anti-oxidant markers were observed in mussels exposed to micro-PS together with fluoranthene. Overall these results suggest that under the experimental conditions of our study micro-PS led to direct toxic effects at tissue, cellular and molecular levels, and modulated fluoranthene kinetics and toxicity in marine mussels.
Afficher plus [+] Moins [-]Emission characteristic of polychlorinated dibenzo-p-dioxins and polychlorinated dibenzofurans (PCDD/Fs) from medical waste incinerators (MWIs) in China in 2016: A comparison between higher emission levels of MWIs and lower emission levels of MWIs
2016
Li, Jiafu | Lv, Zhiwei | Du, Lei | Li, Xiaonan | Hu, Xuepeng | Wang, Chong | Niu, Zhiguang | Zhang, Ying
Emission characteristic of polychlorinated dibenzo-p-dioxins and polychlorinated dibenzofurans (PCDD/Fs) from 12 medical waste incinerators (MWIs) which have a total yearly capacity of 523 440 ton medical waste and accounted for 8.1% of total yearly capacity of 246 MWIs in China were studied. The congeners profile, emissions and toxic equivalent concentrations (TEQ) indicators of PCDD/Fs in stack gas from two groups of MWIs were researched, and the possible formation mechanisms of PCDD/Fs from MWIs were preliminarily discussed. The results of present study were summarized as follows. (1) The total concentrations and TEQ of PCDD/Fs in stack gas from MWIs were 0.516–122.803 ng Nm−3 and 0.031–3.463 ng I-TEQ Nm−3, respectively. (2) 1,2,3,4,6,7,8-H7CDF, O8CDD, O8CDF and 1,2,3,4,6,7,8-H7CDD were the indicatory PCDD/Fs of MWI source, which could be used to apportion the sources of PCDD/Fs in environmental medium in China. (3) The emission factors of PCDD/Fs from MWIs ranged from 32.7 to 4900.0 ng I-TEQ ton−1 with a mean of 1923.6 ng I-TEQ ton−1. (4) The gas emissions of PCDD/Fs from researched 12 MWIs and all of MWIs in China in 2016 were 37.742 and 465.951 mg I-TEQ year−1, respectively. (5) 1,2,3,7,8,9-H6CDF and 1,2,3,4,7,8-H6CDF were effective TEQ indicators for the real-time monitoring of the PCDD/Fs emission. (6) The congeners profile and factor composition of PCDD/Fs in stack gas from two groups of MWIs were researched based on positive matrix factorization (PMF) model, and the possible formation mechanisms of PCDD/Fs from MWIs were preliminarily discussed.
Afficher plus [+] Moins [-]Assessing the uptake of arsenic and antimony from contaminated soil by radish (Raphanus sativus) using DGT and selective extractions
2016
Ngo, Lien K. | Pinch, Benjamin M. | Bennett, William W. | Teasdale, Peter R. | Jolley, Dianne F.
The enrichment of soil arsenic (As) and antimony (Sb) is putting increasing pressure on the environment and human health. The biogeochemical behaviour of Sb and its uptake mechanisms by plants are poorly understood and generally assumed to be similar to that of As. In this study, the lability of As and Sb under agricultural conditions in historically contaminated soils was assessed. Soils were prepared by mixing historically As and Sb-contaminated soil with an uncontaminated soil at different ratios. The lability of As and Sb in the soils was assessed using various approaches: the diffusive gradients in thin films technique (DGT) (as CDGT), soil solution analysis, and sequential extraction procedure (SEP). Lability was compared to the bioaccumulation of As and Sb by various compartments of radish (Raphanus sativus) grown in these soils in a pot experiment. Irrespective of the method, all of the labile fractions showed that both As and Sb were firmly bound to the solid phases, and that Sb was less mobile than As, although total soil Sb concentrations were higher than total soil As. The bioassay demonstrated low bioaccumulation of As and Sb into R. sativus due to their low lability of As and Sb in soils and that there are likely to be differences in their mechanisms of uptake. As accumulated in R. sativus roots was much higher (2.5–21 times) than that of Sb, while the Sb translocated from roots to shoots was approximately 2.5 times higher than that of As. As and Sb in R. sativus tissues were strongly correlated with their labile concentrations measured by DGT, soil solution, and SEP. These techniques are useful measures for predicting bioavailable As and Sb in the historically contaminated soil to R. sativus. This is the first study to demonstrate the suitability of DGT to measure labile Sb in soils.
Afficher plus [+] Moins [-]Detachment of fullerene nC60 nanoparticles in saturated porous media under flow/stop-flow conditions: Column experiments and mechanistic explanations
2016
Wang, Zhan | Wang, Dengjun | Li, Baoguo | Wang, Jizhong | Li, Tiantian | Zhang, Mengjia | Huang, Yuanfang | Shen, Chongyang
This study was aimed at investigating the detachment of fullerene nC60 nanoparticles (NPs) in saturated sand porous media under transient and static conditions. The nC60 NPs were first attached at primary minima of Derjaguin–Landau–Verwey–Overbeek (DLVO) interaction energy profiles in electrolyte solutions with different ionic strengths (ISs). The columns were then eluted with deionized water to initiate nC60 NP detachment by decreasing solution IS. Finally, the flow of the columns was periodically interrupted to investigate nC60 NP detachment under static condition. Our results show that the detachment of nC60 NPs occurred under both transient and static conditions. The detachment under transient conditions was attributed to the fact that the attractions acting on the nC60 NPs at primary minima were weakened by nanoscale physical heterogeneities and overcome by hydrodynamic drags at lower ISs. However, a fraction of nC60 NPs remained at shallow primary minima in low flow regions, and detached via Brownian diffusion during flow interruptions. Greater detachment of nC60 NPs occurred under both transient and static conditions if the NPs were initially retained in electrolyte solutions with lower valent cations due to lower attractions between the NPs and collectors. Decrease in collector surface chemical heterogeneities and addition of dissolved organic matter also increased the extent of detachment by increasing electrostatic and steric repulsions, respectively. While particle attachment in and subsequent detachment from secondary minima occur in the same electrolyte solution, our results indicate that perturbation in solution chemistry is necessary to lower the primary minimum depths to initiate spontaneous detachment from the primary minima. These findings have important implications for predicting the fate and transport of nC60 NPs in subsurface environments during multiple rainfall events and accordingly for accurately assessing their environmental risks.
Afficher plus [+] Moins [-]Importance of suspended sediment (SPS) composition and grain size in the bioavailability of SPS-associated pyrene to Daphnia magna
2016
Xia, Xinghui | Zhang, Xiaotian | Zhou, Dong | Bao, Yimeng | Li, Husheng | Zhai, Yawei
Hydrophobic organic compounds (HOCs) tend to associate with suspended sediment (SPS) in aquatic environments; the composition and grain size of SPS will affect the bioavailability of SPS-associated HOCs. However, the bioavailability of HOCs sorbed on SPS with different compositions and grain sizes is not well understood. In this work, passive dosing devices were made to control the freely dissolved concentration of pyrene, a typical HOC, in the exposure systems. The effect of pyrene associated with amorphous organic carbon (AOC), black carbon (BC), and minerals of SPS with grain sizes of 0–50 μm and 50–100 μm on the immobilization and enzymatic activities of Daphnia magna was investigated to quantify the bioavailability of pyrene sorbed on SPS with different grain sizes and compositions. The results showed that the contribution of AOC-, BC-, and mineral-associated pyrene to the total bioavailability of SPS-associated pyrene was approximately 50%–60%, 10%–29%, and 20%–30%, respectively. The bioavailable fraction of pyrene sorbed on the three components of SPS was ordered as AOC (22.4%–67.3%) > minerals (20.1%–46.0%) > BC (9.11%–16.8%), and the bioavailable fraction sorbed on SPS of 50–100 μm grain size was higher than those of 0–50 μm grain size. This is because the SPS grain size will affect the ingestion of SPS and the SPS composition will affect the desorption of SPS-associated pyrene in Daphnia magna. According to the results obtained in this study, a model has been developed to calculate the bioavailability of HOCs to aquatic organisms in natural waters considering both SPS grain size and composition.
Afficher plus [+] Moins [-]Semen phthalate metabolites, semen quality parameters and serum reproductive hormones: A cross-sectional study in China
2016
Wang, Yi-Xin | Zeng, Qiang | Sun, Yang | Yang, Pan | Wang, Peng | Li, Jin | Huang, Zhen | You, Ling | Huang, Yue-Hui | Wang, Cheng | Li, Yu-Feng | Lu, Wen-Qing
Exposure to phthalates has been found to have adverse effects on male reproductive function in animals. However, the findings from human studies are inconsistent. Here we examined the associations of phthalate exposure with semen quality and reproductive hormones in a Chinese population using phthalate metabolite concentrations measured in semen as biomarkers. Semen (n = 687) and blood samples (n = 342) were collected from the male partners of sub-fertile couples who presented to the Reproductive Center of Tongji Hospital in Wuhan, China. Semen quality parameters and serum reproductive hormone levels were determined. Semen concentrations of 8 phthalate metabolites were assessed using high-performance liquid chromatography and tandem mass spectrometry. Associations of the semen phthalate metabolites with semen quality parameters and serum reproductive hormones were assessed using confounder-adjusted linear and logistic regression models. Semen phthalate metabolites were significantly associated with decreases in semen volume [mono-n-butyl phthalate (MBP), mono-(2-ethylhexyl) phthalate (MEHP), mono(2-ethyl-5-hydroxyhexyl) phthalate (MEHHP), mono(2-ethyl-5-oxohexyl) phthalate (MEOHP)], sperm curvilinear velocity [monobenzyl phthalate (MBzP), MEHP, the percentage of di-(2-ethylhexyl)-phthalate metabolites excreted as MEHP (%MEHP)], and straight-line velocity (MBzP, MEHP, %MEHP), and also associated with an increased percentage of abnormal heads and tails (MBzP) (all p for trend <0.05). These associations remained suggestive or significant after adjustment for multiple testing. There were no significant associations between semen phthalate metabolites and serum reproductive hormones. Our findings suggest that environmental exposure to phthalates may impair human semen quality.
Afficher plus [+] Moins [-]