Affiner votre recherche
Résultats 431-440 de 4,938
Co-transport of phenanthrene and pentachlorophenol by natural soil nanoparticles through saturated sand columns Texte intégral
2019
Liu, Fei | Xu, Baile | He, Yan | Brookes, Philip C. | Xu, Jianming
Mobile colloids such as nanoparticles (NPs) are often considered to affect the fate and transport of various contaminants by serving as carriers. Many studies have focused on the effect of engineered NPs on contaminant transport. To date, very little information is available on the co-transport of natural soil NPs with typical organic contaminants. This study investigated the co-transport of phenanthrene (PHE) and pentachlorophenol (PCP) by three soil NPs through saturated sand columns. Soil NPs with high organic matter and particle concentration were the most effective in transporting PHE through columns. In addition, soil NPs significantly increased the transport of low-level PHE (0.2 mg L−1) but there was no obvious increase at 1.0 mg L−1 PHE. This is attributed to a higher ratio of NP-associated PHE to total PHE at a low-level than at a high-level during transport. In contrast to PHE, the chemical speciation of PCP determined its mobility, which was highly dependent on solution pH. At pH 6.5, anionic PCP became dominant and soluble in the effluent. This could account for the negligible effect of soil NPs on PCP mobility. At pH 4.0, however, neutral molecular PCP dominated and, as expected, decreased mobility of PCP occurred. Soil NPs considerably enhanced the transport of neutral PCP in NP-associated forms compared to controls, due to the high hydrophobicity and sorption affinity of PCP to NPs. The mobility of soil NPs was little affected by PHE and PCP under tested conditions. This study indicated that highly mobile soil NPs may be effective carriers for organic contaminants and give a new direction to polluted site remediation by using a natural material, e.g., soil.
Afficher plus [+] Moins [-]Chronic exposure to 6:2 chlorinated polyfluorinated ether sulfonate acid (F-53B) induced hepatotoxic effects in adult zebrafish and disrupted the PPAR signaling pathway in their offspring Texte intégral
2019
Shi, Guohui | Cui, Qianqian | Wang, Jinxing | Guo, Hua | Pan, Yitao | Sheng, Nan | Guo, Yong | Dai, Jiayin
As a Chinese-specific alternative to perfluorooctane sulfonate (PFOS), 6:2 chlorinated polyfluorinated ether sulfonate (commercial name: F-53B) has been used in the metal plating industry for over 40 years. This prevalence of use has resulted in its subsequent detection within the environment, wildlife, and humans. Despite this, however, its hepatotoxic effects on aquatic organisms remain unclear. Here, we characterized the impacts of long-term F-53B exposure on adult zebrafish liver and their offspring. Results showed that the concentration of F-53B was greater in the F0 liver than that in the gonads and blood. Furthermore, males had significantly higher liver F-53B levels than females. Hepatomegaly and obvious cytoplasmic vacuolation indicated that F-53B exposure induced liver injury. Compared to control, liver triglyceride levels decreased by 30% and 33.5% in the 5 and 50 μg/L-exposed males and 22% in 50 μg/L-exposed females. Liver transcriptome analysis of F0 adult fish found 2175 and 1267 differentially expressed genes (DEGs) in the 5 μg/L-exposed males and females, respectively. Enrichment analyses further demonstrated that the effects of F-53B on hepatic transcripts were sex-dependent. Gene Ontology showed that most DEGs were involved in multicellular organism development in male fish, whereas in female fish, most DEGs were related to metabolic processes and gene expression. qRT-PCR analysis indicated that the PPAR signaling pathway likely contributed to F-53B-induced disruption of lipid metabolism in F0 adult fish. In F1 larvae (5 days post fertilization), the transcription of pparα increased, like that in F0 adult fish, but most target genes showed the opposite expression trends as their parents. Taken together, our research demonstrated chronic F-53B exposure adversely impacts zebrafish liver, with disruption of PPAR signaling pathway dependent on sex and developmental stage.
Afficher plus [+] Moins [-]Noncovalent interactions between fluoroquinolone antibiotics with dissolved organic matter: A 1H NMR binding site study and multi-spectroscopic methods Texte intégral
2019
Zhao, Xiating | Hu, Zhongzheng | Yang, Xing | Cai, Xuewei | Wang, Zhaowei | Xie, Xiaoyun
Fluoroquinolone antibiotics (FQs) are considered to be emerging environmental contaminants that have been detected extensively in aquatic environment. It is of quite importance to explore FQs interacting with dissolved organic matter (DOM). The interactions of FQs with DOM were examined by nuclear magnetic resonance (NMR) spectroscopy, fluorescence quenching, UV–vis, Fourier transform infrared (FT-IR) spectroscopic techniques. The bindings of FQs to DOM had one single binding site and their quenching mechanisms were static, which were evaluated by the Stern-Volmer and Site-binding equations. Addition of DOM could result in micro-environmental changes of fluorophores groups in FQs. The location adjacent oxygen right of Ofloxacin (OFL) and the aromatic ring (the adjacency replaced by two nitrogen-containing groups) of Ciprofloxacin (CIP), Enrofloxacin (ENR), Norfloxacin (NOR) might be highly affected by DOM molecule. The negative enthalpy change (ΔH⁰), negative entropy change (ΔS⁰) and the positive Gibbs' energy change (ΔG⁰) figured out that the binding processes were exothermic but not thermodynamic favorable, the formation of HA-FQs complexes would be powered chiefly by the ΔS⁰. H-bonding, electrostatic effect, van der Waals force were the acting force in the binding reactions and the π-π stacking effect was the major binding force under alkaline conditions. Moreover, the protonated, deprotonated, or partially protonated state of FQs were found to have different binding capacity to DOM, and the binding reactions for FQs-HA system were suppressed as the ionic strength increased. Meanwhile, alterations of FQs conformation in the presence of DOM were evaluated by FT-IR and UV–vis spectra.
Afficher plus [+] Moins [-]Applicability of BaTiO3/graphene oxide (GO) composite for enhanced photodegradation of methylene blue (MB) in synthetic wastewater under UV–vis irradiation Texte intégral
2019
Mengting, Zhu | Kurniawan, Tonni Agustiono | Fei, Song | Ouyang, Tong | Othman, Mohd Hafiz Dzarfan | Rezakazemi, Mashallah | Shirazian, Saeed
Methylene blue (MB) is a dye pollutant commonly present in textile wastewater. We investigate and critically evaluate the applicability of BaTiO3/GO composite for photodegradation of MB in synthetic wastewater under UV–vis irradiation. To enhance its performance, the BaTiO3/GO composite is varied based on the BaTiO3 weight. To compare and evaluate any changes in their morphologies and crystalline structures before and after treatment, BET (Brunauer–Emmett–Teller), XRD (X-ray diffraction), FTIR (Fourier transform infrared spectroscopy), SEM (scanning electron microscopy) and TEM (transmission electron microscopy) tests are conducted, while the effects of reaction time, pH, dose of photocatalyst and initial MB concentration on its photodegradation by the composite are also investigated under identical conditions. The degradation pathways and removal mechanisms of MB by the BaTiO3/GO are elaborated. It is evident from this study that the BaTiO3/GO composite is promising for MB photodegradation through ·OH. Under optimized conditions (0.5 g/L of dose, pH 9.0, and 5 mg/L of MB concentration), the composite with 1:2 dose ratio of BaTiO3/GO has the highest MB degradation rate (95%) after 3 h of UV vis irradiation. However, its treated effluents still could not comply with the discharge standard limit of less than 0.2 mg/L imposed by national environmental legislation. This suggests that additional biological treatments are still required to deal with the remaining oxidation by-products of MB, still present in the wastewater samples such as 3,7-bis (dimethyl-amino)-10H-phenothiazine 5-oxide.
Afficher plus [+] Moins [-]Dynamics, biodegradability, and microbial community shift of water-extractable organic matter in rice–wheat cropping soil under different fertilization treatments Texte intégral
2019
Hui, Cai | Liu, Bing | Wei, Ran | Jiang, Hui | Zhao, Yuhua | Liang, Yongchao | Zhang, Qichun | Xu, Ligen
Although fertilization plays an important role in determining the contents of soil dissolved organic matters or water-extractable organic matter (DOM, WEOM), knowledge regarding the dynamics, biodegradability, and microbial community shifts of WEOM in response to different fertilization treatments is very limited, particularly in rice–wheat cropping soil. Thus, in the present study, we performed biodegradation experiments using WEOM extracted from samples of soil that had been subjected to four different fertilization treatments: unfertilized control (CK), chemical fertilizer (CF), 50% chemical fertilizer plus pig manure (PMCF), and 100% chemical fertilizer plus rice straw (SRCF). UV spectrum and fluorescence 3D excitation–emission matrix analyses applied to investigate the chemical composition of WEOM revealed that all examined WEOMs were derived from microbial activity and the dominant portion comprised humic acid-like compounds. After the incubation, 31.17, 31.63, 43.47, and 33.01% of soil WEOM from CK, CF, PMCF, and SRCF treatments, respectively, were biodegraded. PMCF- derived WEOM had the highest biodegradation rate. High-throughput sequencing analyses performed to determine the microbial community before and after the incubation indicated that Sphingomonas, Bacillus, and Flavisolibacter were the predominant bacterial genera in the original inoculum derived from the four fertilization treatments. Following biodegradation, we observed that the dominant bacteria differed according to fertilization treatments: Curvibacter (43.25%) and Sphingobium (10.47%) for CK, Curvibacter (29.68%) and Caulobacter (20.00%) for CF, Azospirillum (23.68%) and Caulobacter (13.29%) for PMCF, and Ralstonia (51.75%) for SRCF. Canonical correspondence analysis revealed that, shifts in the microbial community were closely correlated with pH and specific UV absorbance at 254 nm. We speculated that the inherent traits of different WEOM and the properties of soil solutions under different fertilization treatments shaped the soil microbial community structure, thereby influencing the biodegradation of WEOM.
Afficher plus [+] Moins [-]Geochemical exposure of heavy metals in environmental samples from the vicinity of old gas mining area in northern part of Sindh Pakistan. Adverse impact on children Texte intégral
2019
Shaikh, Rafia | Kazi, Tasneem Gul | Afridi, Hassan Imran | Akhtar, Asma | Baig, Jameel Ahmed | Arain, Mohammad Balal
In early nineteen century, a gas field was operational in southern part of Sindh, Pakistan for power production. The plant was completely un-operational for last three decades, whereas all wastage and raw materials are still dumped there, which might be the source to contaminate the ground water. The most of the workers population still living in different villages nearby the gas field. In present study, evaluated the undesirable effects of the toxic metals (lead and cadmium) via consuming groundwater for drinking and other domestic purpose especially in children of ≤5.0 years. For comparative purpose groundwater of nonindustrial area (nonexposed) was also analysed and their impact on age matched children was carried out. Biological samples (scalp hair and blood) were collected from children of exposed and nonexposed areas. The Cd and Pb in scalp hair and blood samples were carried out by graphite furnace atomic absorption spectrometry. Whereas, Cd and Pb in groundwater obtained from both areas were determined prior to applied preconcentration method as reported in our previous works. The Cd and Pb contents in the groundwater of villages of exposed area were found in the range of 5.18–10.9 and 19.9–69.5 μg/L, respectively. Whereas, the groundwater of nonexposed area contains Cd and Pb in the range of 1.79–3.78 and 5.07–24.3 μg/L, respectively. It was observed that the concentrations of Cd and Pb in scalp hair and blood samples of children belongs to exposed area have ≥2.0 fold higher than the resulted data attained for age matched control children, indicating as the exposure biomarkers of toxic metals. The children belong to exposed area have poor health, anemic and low body mass index (<13 kg/m2). A significant positive correlations among Cd and Pb concentrations in biological samples of exposed subjects and groundwater was observed (p < 0.01).
Afficher plus [+] Moins [-]Contributions of artifactual materials to the toxicity of anthropogenic soils and street dusts in a highly urbanized terrain Texte intégral
2019
Howard, Jeffrey | Weyhrauch, Jonathan | Loriaux, Glenn | Schultz, Brandy | Baskaran, Mark
A study was undertaken to test the hypothesis that the presence of fly ash and other artifactual materials (AMs) significantly increases the toxicity of urban soil and street dust. AMs were distinguished as artifacts (artificial particles > 2 mm in size), and particulate artifacts (≤2 mm in size); street dust was the <63 μm fraction of street sediments. Reference artifacts, street dusts, and topsoils representing different land use types in Detroit, Michigan were analyzed for miscellaneous radionuclides, trace elements, magnetic susceptibility (MS), and acetic acid-extractable (leachable) Pb. Background levels were established using native glacial sediments. Street sediments were found to have a roadside provenance, hence street dusts inherited their contamination primarily from local soils. All soils and dusts had radionuclide concentrations similar to background levels, and radiological hazard indices within the safe range. Artifacts, fly ash-impacted soils and street dusts contained elevated concentrations of toxic trace elements, which varied with land use type, but none produced a significant amount of leachable Pb. It is inferred that toxic elements in AMs are not bioavailable because they are occluded within highly insoluble materials. Hence, these results do not support our hypothesis. Rather, AMs contribute to artificially-elevated total concentrations leading to an overestimation of toxicity. MS increased with increasing total concentration, hence proximal sensing can be used to map contamination level, but the weak correlation between total and leachable Pb suggests that such maps do not necessarily indicate the associated biohazard. Home site soils with total Pb concentrations >500 mg kg−1 were sporadically toxic. Thus, these results argue against street dust as the local cause of seasonally elevated blood-Pb levels in children. Lead-bearing home site soil tracked directly indoors to form house dust is an alternative exposure pathway.
Afficher plus [+] Moins [-]Metal(loid) oxides and metal sulfides nanomaterials reduced heavy metals uptake in soil cultivated cucumber plants Texte intégral
2019
Song, Chun | Ye, Fang | Zhang, Huiling | Hong, Jie | Hua, Chenyu | Wang, Bin | Chen, Yanshan | Ji, Rong | Zhao, Lijuan
Agricultural soil is one of the main sink for both heavy metals and nanomaterials (NMs). Whether NMs can impact heavy metals uptake or bioaccumulation in plants is unknown. Here, cucumber plants were cultivated in a multi-heavy metals contaminated soil amended with four types of NMs (SiO2, TiO2, ZnS and MoS2) separately for four weeks. Physiological and biochemical parameters were determined to investigate the impact of NMs on plant growth. Inductively coupled plasma mass spectrometry was employed to determine the metal content in plants. Results showed that none of the tested NMs impacted plants biomass, but all the NMs showed different degrees of reduction in heavy metals bioaccumulation in plant roots, stems and leaves. However, four NMs showed different degrees of reduction in macro and micro nutrients uptake. MoS2 decreased the bioaccumulation of heavy metals (As, Cd, Cr, Cu, Ni, Al, Ti and Pb) for 36.4–60.6% and nutrients (Mg, Fe, K, Si and Mn) for 40.1%–50.1% in roots. Exposure to MoS2 NMs also significantly increased 23.4% of Si in leaves, 205.6% and 83.9% of Mo in roots and stems, respectively. In general, the results of this study showed promising potential for NMs to reduce uptake of heavy metals in crop plants, especially MoS2 NMs. However, the negative impacts of perturbing nutrients uptake should be paid attention as well.
Afficher plus [+] Moins [-]Dechlorane plus in greenhouse and conventional vegetables: Uptake, translocation, dissipation and human dietary exposure Texte intégral
2019
Sun, Jianqiang | Wu, Yihua | Tao, Ninger | Lv, Li | Yu, Xiaoyan | Zhang, Anping | Qi, Hong
In an attempt to evaluate the behavior of Dechlorane plus (DP) in soil-vegetable systems, this work investigated the uptake and translocation of DP by vegetables and the dissipation of DP in soil under greenhouse and conventional conditions. To address human dietary exposure to DP, estimated dietary intake via vegetable consumption was calculated. The uptake potential indexes of DP from soil into root for tomato and cucumber cultivated under different conditions ranged from 0.089 to 0.71. The ranges of uptake potential indexes of DP from resuspended soil particles into stem, leaf and fruit were 0.68–0.78, 0.27–0.42 and 0.39–0.75, respectively. The uptake potential indexes in greenhouse vegetables were generally higher than those in conventional vegetables when the vegetables had been planted in contaminated soil, indicating that greenhouse enhanced the uptake of DP with a high soil concentration by vegetables. The translocation factor (TF) values of DP in vegetables were in the range of 0.022–0.17, indicating that DP can be transported from root to fruit even though it has a high octanol water partition coefficient (KOW). The half-lives of DP dissipation in soil ranged from 70 to 102 days. The dissipation of DP in greenhouse soil was slightly slower than that in conventional soil. Higher estimated dietary intake (EDI) values of DP via greenhouse vegetables were observed due to the higher concentration of DP in greenhouse vegetables than conventional vegetables. These results suggested that greenhouses should not be adopted for vegetable production in contaminated regions.
Afficher plus [+] Moins [-]Aggregation kinetics of different surface-modified polystyrene nanoparticles in monovalent and divalent electrolytes Texte intégral
2019
Yu, Sujuan | Shen, Mohai | Li, Shasha | Fu, Yueju | Zhang, Dan | Liu, Huayi | Liu, Jingfu
The intentional production and degradation of plastic debris may result in the formation of nanoplastics. Currently, the scarce information on the environmental behaviors of nanoplastics hinders accurate assessment of their potential risks. Herein, the aggregation kinetics of different surface-modified polystyrene nanoparticles in monovalent and divalent electrolytes was investigated to shed some light on the fate of nanoplastics in the aquatic environment. Three monodisperse nanoparticles including unmodified nanoparticles (PS-Bare), carboxylated nanoparticles (PS–COOH) and amino modified nanoparticles (PS–NH₂), as well as one polydisperse nanoparticles that formed by laser ablation of polystyrene films (PS-Laser) were used as models to understand the effects of surface groups and morphology. Results showed that aggregation kinetics of negatively charged PS-Bare and PS-COOH obeyed the DLVO theory in NaCl and CaCl₂ solutions. The presence of Suwannee river natural organic matters (SRNOM) suppressed the aggregation of PS-Bare and PS-COOH in monovalent electrolytes by steric hindrance. However, in divalent electrolytes, their stability was enhanced at low concentrations of SRNOM (below 5 mg C L⁻¹), while became worse at high concentrations of SRNOM (above 5 mg C L⁻¹) due to the interparticle bridging effect caused by Ca²⁺ and carboxyl groups of SRNOM. The cation bridging effect was also observed for PS-laser in the presence of high concentrations of divalent electrolytes and SRNOM. The adsorption of SRNOM could neutralize or even reverse surface charges of positively charged PS-NH₂ at high concentrations, thus enhanced or inhibited the aggregation of PS-NH₂. No synergistic effect of Ca²⁺ and SRNOM was observed on the aggregation of PS-NH₂, probably due to the steric repulsion imparted by the surface modification. Our results highlight that surface charge and surface modification significantly influence aggregation behaviors of nanoplastics in aquatic systems.
Afficher plus [+] Moins [-]