Affiner votre recherche
Résultats 4351-4360 de 4,937
Dispersion, persistence, and stability of the biocontrol agent Penicillium frequentans strain 909 after stone fruit tree applications Texte intégral
2019
Guijarro, Belen | Larena, Inmaculada | Vilanova, Laura | Torres, Rosario | Balsells-Llauradó, Marta | Teixidó, Neus | Melgarejo, Paloma | De Cal, Antonieta
Dispersion, persistence, and stability of the biocontrol agent Penicillium frequentans strain 909 after stone fruit tree applications Texte intégral
2019
Guijarro, Belen | Larena, Inmaculada | Vilanova, Laura | Torres, Rosario | Balsells-Llauradó, Marta | Teixidó, Neus | Melgarejo, Paloma | De Cal, Antonieta
The capacity of dispersion, persistence, and stability from biocontrol agents is essential before these organisms can be developed into a commercial product. Interactions that microorganisms establish with stone fruit trees may be beneficial in the exploitation of trees in agriculture as crop production. The natural background levels of Penicillium frequentans strain 909 dispersion, persistence, and stability were assessed after tree applications and postharvest conditions. A fingerprinting-based approach to trace genetic stability of P. frequentans along stored time and its release in the field was developed. P. frequentans was successfully traced and discriminated. This strain was dispersed well in treated trees, persisting in the ecosystem up to 2 weeks and staying genetically stable after 36 months of storage. However, the dispersal of P. frequentans was very limited on around untreated trees and soil. P. frequentans dispersed randomly into the air, and its presence reduced from the first day to disappear completely at 15–21 days after application. Great losses of P. frequentans and its increased dispersal in open field conditions probably resulted from rainfall. Biological control strategies with Pf909 were discussed.
Afficher plus [+] Moins [-]Dispersion, persistence, and stability of the biocontrol agent Penicillium frequentans strain 909 after stone fruit tree applications Texte intégral
2019
The capacity of dispersion, persistence, and stability from biocontrol agents is essential before these organisms can be developed into a commercial product. Interactions that microorganisms establish with stone fruit trees may be beneficial in the exploitation of trees in agriculture as crop production. The natural background levels of Penicillium frequentans strain 909 dispersion, persistence, and stability were assessed after tree applications and postharvest conditions. A fingerprinting-based approach to trace genetic stability of P. frequentans along stored time and its release in the field was developed. P. frequentans was successfully traced and discriminated. This strain was dispersed well in treated trees, persisting in the ecosystem up to 2 weeks and staying genetically stable after 36 months of storage. However, the dispersal of P. frequentans was very limited on around untreated trees and soil. P. frequentans dispersed randomly into the air, and its presence reduced from the first day to disappear completely at 15-21 days after application. Great losses of P. frequentans and its increased dispersal in open field conditions probably resulted from rainfall. Biological control strategies with Pf909 were discussed.
Afficher plus [+] Moins [-]Bioleaching of heavy metals from harbor sediment using sulfur-oxidizing microflora acclimated from native sediment and exogenous soil Texte intégral
2019
Zhang, Jiayuan | Chen, Shen-Yi | Klipkhayai, Phakchira | Chiemchaisri, Chart
The harbor sediment containing high concentration of heavy metals may pose serious impacts on the marine ecosystem and environmental quality. The bioleaching process has been considered as an environmentally friendly and cost-effective alternative for removing heavy metals from contaminated sediments. In this study, a series of experiments were performed to investigate the feasibility of bioleaching process for removing heavy metals from the contaminated harbor sediments. The performance of the bioleaching process inoculated with sulfur-oxidizing microflora acclimated from the native harbor sediment was compared with that acclimated from the exogenous soil. In the bioleaching experiment with inoculants from native sediment, the efficiency of Zn, Cu, Cr, Pb, and Ni (30 days) reached 39–100%, 21–94%, 8–63%, 5–74%, and 19–77%, respectively. While 59–100% of Zn, 22–100% of Cu, 0–95% of Cr, 0–100% of Pb, and 22–100% of Ni were respectively removed in the bioleaching experiment with inoculants from exogenous soil after 30 days of reaction time. The results show that the rate and efficiency of metal removal in the bioleaching process decreased with an increase of sediment solid content from 10 to 40 g/L. The efficiency of metal removal in the bioleaching process with inoculants from the native sediment was lower than those from the exogenous soil due to the bacterial activity. By the fractionation of metal in the harbor sediment, exchangeable, carbonate-bound, and Fe/Mn oxide-bound metals (mobile fractions) were found to be apparently reduced and even organic matter/sulfide-bound and residual metals (stable fractions) were slightly removed after the bioleaching experiment.
Afficher plus [+] Moins [-]Heavy metal concentrations in drinking water in a country heavily reliant on desalination Texte intégral
2019
Barnett-Itzhaki, Zohar | Eaton, Jarrod | Hen, Irit | Berman, Tamar
Desalination is an important strategy for adapting to the global shortage in safe drinking water. Israel relies heavily on desalinated water (over 50% of supplied drinking water). However, desalinated water may be more corrosive than water from other sources and may cause leaching of heavy metals from materials in contact with water. In this study, we measured heavy metal concentrations (copper, iron, lead) in 1379 drinking water samples in educational institutions in Israel and compared heavy metal concentrations in drinking water from different sources (desalination, groundwater, desalinated and groundwater mixture). 99.9% of the samples met the standard for copper (1400 μg/l), 99.7% for iron (1000 μg/l), and 99.6% for lead (10 μg/l). As expected, heavy metal concentrations were higher in first flush samples compared to flushed samples (significant findings for lead, copper, and iron). Heavy metal concentrations were not higher in desalinated water, or desalinated and groundwater mixture, compared to groundwater. In first flush samples, lead concentrations in groundwater were significantly higher than in desalinated-groundwater mixtures (p = 0.005). In flushed samples, lead concentrations in groundwater were higher than in desalinated-groundwater mixtures but the difference was not significant (p = 0.07). We suggest that regulatory requirements for stabilization of desalinated water and restrictions on lead content of plumbing materials appear to have been effective in preventing increased exposure to lead in desalinated drinking water in Israel. Further study should focus on potential heavy metal leaching in pure desalinated water samples.
Afficher plus [+] Moins [-]Urinary bisphenol A (BPA) concentrations and exposure predictors among pregnant women in the Laizhou Wan Birth Cohort (LWBC), China Texte intégral
2019
Zhao, Shasha | Wang, Caifeng | Pan, Rui | Shi, Rong | Wang, Weiye | Tian, Ying
Although BPA use is widespread and often detectable in humans, little is known about its exposure levels and potential exposure predictors in pregnant women in China. We investigated the BPA exposure levels in pregnant women and its health implications and potential exposure predictors. Urinary BPA levels were measured for 506 pregnant women in northern China. Hazard quotients (HQs) based on estimated daily intakes (EDIs) were conducted. Sociodemographic characteristics and food consumption during pregnancy were collected and seasons of sample collection were recorded. The detection rate of urinary BPA was 86.6% and the median concentrations were 0.48 μg/L (1.05 μg/g creatinine). The EDI (median = 0.008 μg/kg bw/day) was much lower than the recommended tolerable daily doses and the HQ (median = 0.002) much lower than 1. The urine collected in summer had significantly higher BPA levels than that collected in other seasons (β = 0.225; 95% CI − 0.008, 0.458; p = 0.03). Women “always consuming shellfish” had significantly higher BPA levels than those “seldom consuming shellfish” (β = 0.341; 95% CI 0.022, 0.66; p = 0.04). The study found a wide exposure to BPA among pregnant women in this region, which might be associated with seasonal variation and shellfish consumption. Although the HQs suggested no obvious risk, further attention to the comprehensive exposure and potential determinants should be paid in view of its endocrine-disrupting potential.
Afficher plus [+] Moins [-]Distinctive fingerprints of genotoxicity induced by As, Cr, Cd, and Ni in a freshwater fish Texte intégral
2019
Singh, Meenu | Khan, Huma | Verma, Yeshvandra | Rana, Suresh Vir Singh
Genotoxicity of three toxic elements (chromium, cadmium, nickel) and a metalloid (arsenic) has been studied in a freshwater fish, Channa punctatus using micronuclei (MN) test, comet assay, and erythrocyte nuclear alterations (ENAs) as fingerprints of genotoxicity. These tests yielded different results suggesting involvement of different mechanisms for their genotoxicity. While highest frequency of blebbed nuclei was observed in chromium-treated fish (6.5 ± 0.76), lowest was observed in cadmium-treated fish (4.0 ± 1.0). Maximum number of notched nuclei was recorded in arsenic-treated fish (5.5 ± 1.15) whereas highest numbers of lobed nuclei were found in cadmium-treated fish (4.5 ± 0.13). These differences might be attributed to selective bioaccumulation and chemodynamics of each element. Other parameters used to determine genotoxicity viz.: lipid peroxidation and DNA damage also suggested different mechanisms of their genotoxicity. It is suggested that an integrative approach, using a battery of tests for determining genotoxicity, should be made while making environmental health risk assessment and ecotoxicological studies of these toxic elements.
Afficher plus [+] Moins [-]Melatonin attenuates bisphenol A-induced toxicity of the adrenal gland of Wistar rats Texte intégral
2019
Olukole, Samuel Gbadebo | Lanipekun, Damilare Olaniyi | Ola-Davies, Eunice Olufunke | Oke, Bankole Olusiji
This study investigated the role of melatonin (MLT) on adrenal gland toxicity induced by bisphenol A (BPA). Adult male rats were divided into four groups of seven animals each: Group I (control) received oral 0.2 ml canola oil; group II received intra-peritoneal 10 mg/kg BW/day MLT; and group III received oral BPA (10 mg/kg BW/day). Group IV rats were treated with same dose of BPA as group III with a concomitant intra-peritoneal 10 mg/kg BW/day MLT. All treatments lasted for 14 days. BPA significantly increased (P < 0.05) adrenal index, circulating levels of corticosterone and adrenocorticotropic hormone (ACTH) in the rats. BPA caused marked vascular congestion, hyperplasia, cellular distortion, increased lipid peroxidation, decreased antioxidant enzymes, and decreased expression of αSmooth muscle actin as well as vimentin proteins. The concomitant treatment with MLT ameliorated these BPA-induced alterations. It is likely that melatonin attenuates BPA-induced alterations of the adrenal gland of rats through the antioxidant defense mechanism.
Afficher plus [+] Moins [-]Spatial and temporal variations of volatile organic compounds using passive air samplers in the multi-industrial city of Ulsan, Korea Texte intégral
2019
Kim, Seong-Joon | Kwon, Hye-Ok | Lee, Myoung-In | Seo, Yongwon | Choi, Sung-Deuk
The source-receptor relationship of volatile organic compounds (VOCs) is an important environmental concern, particularly in large industrial cities; however, only a few studies have identified VOC sources using high spatial resolution data. In this study, 28 VOCs were monitored in Ulsan, the biggest multi-industrial city in Korea. Passive air samplers were seasonally deployed at eight urban and six industrial sites. The target compounds were detected at all sites. No significant seasonal variations of VOCs were observed probably due to the continuous emissions from major industrial facilities. Benzene, toluene, ethylbenzene, xylenes, and styrene accounted for 66–86% of the concentration of Σ₂₈ VOCs. The spatial distribution of the individual VOCs clearly indicated that petrochemical, automobile, non-ferrous, and shipbuilding industries were major VOC sources. Seasonal wind patterns were found to play a role in the spatial distribution of VOCs. Diagnostic ratios also confirmed that the industrial complexes were the dominant VOC sources. The results of principal component analysis and correlation analyses identified the influence of specific compounds from each industrial complex on individual sites. To the best of our knowledge, this is the first comprehensive report on the seasonal distribution of VOCs with high spatial resolution in a metropolitan industrial city in Korea.
Afficher plus [+] Moins [-]Level of selected heavy metals in surface dust collected from electronic and electrical material maintenance shops in selected Western Oromia towns, Ethiopia Texte intégral
2019
Getachew, Bilise | Amde, Meseret | Danno, Bayissa Leta
Surface dusts from electronic and electrical material maintenance workshops may present significant environmental contamination. The aim of this study was to determine levels of selected heavy metals (Cu, Ni, Co, Cd, Cr, Pb, Zn, and Fe) in surface dust samples collected from electronic and electrical device maintenance workshops located in Ambo, Gedo, and Nekemte towns in Ethiopia. An optimized wet digestion procedure (acid mixture, 3 mL HNO₃, 2 mL HClO₄, and H₂O₂; digestion time, 2 h; digestion temperature, 200 °C) was employed prior to the metals determination by flame atomic absorption spectroscopy. The average amounts of the metals were found to be in the ranges of 73,970–58,980, 59,290–51,120, 8570–5778, 1273–1126, 708.9–261.6, 111.7–101.0, 114.9–89.50, and 12.30–9.620 mg/kg for Pb, Fe, Cu, Cr, Zn, Co, Ni, and Cd, respectively. The results showed that the investigated surface dust samples contained significant levels of the analyzed heavy metals compared to soil samples collected from the corresponding control sites. The heavy metal concentrations in the investigated samples from the three towns followed a decreasing order Pb > Fe >> Cu >> Cr > Zn > Co > Ni > Cd, indicating the presence of elevated amount of Pb in the surface dust samples. The significantly high levels of heavy metals detected in all surface dust samples from electronic and electrical device maintenance shops could be inferred to the seepage of these metals from electronic materials during the maintenance procedures. Based on the result obtained, we strongly recommend a strict monitoring and disposal (policy issue) of wastes generated from electronic and electrical device maintenance shops.
Afficher plus [+] Moins [-]New insights into contrasting mechanisms for PAE adsorption on millimeter, micron- and nano-scale biochar Texte intégral
2019
Ma, Shaoqiang | Jing, Fanqi | Sohi, Saran P. | Chen, Jiawei
Biochar is being examined as a potential sorbent for organic pollutants in the environment including phthalate esters (PAEs). It has been noted that nano-scale biochar particles displayed stronger migration potential than other particles, which poses the potential risk of pollutant transfer through the environment. In this present study, we examined the influence of sub-millimeter (200–600 μm), micron-scale (10–60 μm), and nano-scale (0.1–0.6 μm) biochar on diethyl phthalate (DEP, as a model) adsorption using particles derived from corn straw and rice husk biochar. Meanwhile, the interaction between adsorption capacity and initial pH was also considered. Our results showed that the adsorption capacity of biochar for DEP increased with decreasing particle size, and was considerably higher for nano-scale biochar than for other particles. This was attributable to its developed pore structure and higher specific surface area (SSA), especially the dominant micropore (292.73 m²/g), suggesting that the adsorption of DEP to nano-scale biochar was dominated by pore-filling rather than π-π EDA and H bonding that was applied to biochar of larger, more typical dimensions. The adsorption capacity of nano-scale biochar for DEP was markedly decreased when initial pH was decreased from 9.0 to 3.0. Because an acid environment could reduce the absolute surface charge on nano-scale biochar, it was easier for the particles to agglomerate. Nano-scale biochar therefore have higher activity in alkaline conditions, which could pose certain risks through their application into the environment.
Afficher plus [+] Moins [-]Graviola attenuates DMBA-induced breast cancer possibly through augmenting apoptosis and antioxidant pathway and downregulating estrogen receptors Texte intégral
2019
Zeweil, Mohamed M. | Sadek, Kadry M. | Taha, Nabil M. | El-Sayed, Yasser | Menshawy, Sherif
Breast cancer is a global public health problem where it is the second most prevalent cancer. Historical cancer treatment with graviola has been reported. This study aimed to investigate the protective effects of graviola on 7,12-dimethylbenz[a]anthracene (DMBA)–induced rat breast cancer. Fifty female Wistar rats were allocated into four groups: control group (gastro-gavaged by sesame oil), DMBA-treated group (gastro-gavaged a single dose of DMBA [50 mg/kg body mass, diluted in 1 ml sesame oil]) at the age 57 days, DMBA+G37-treated group (gastro-gavaged a single dose of DMBA [50 mg/kg body mass, diluted in 1 ml sesame oil]) at the age of 57 days plus graviola (200 mg/kg body mass) two times weekly (p.o.) at the age of 37 days till the end of the experiment, and DMBA+G57-treated group (received a single dose of DMBA [50 mg/kg body mass, diluted in 1 ml sesame oil]) plus graviola (200 mg/kg body mass) two times weekly at the age of 57 days until the end of the experiment. After the 30-week experimental period, blood samples were collected. Then, animals were sacrificed to determine the apoptotic indices, antioxidant status, and mammary gland tumor marker (CA 15-3). The DMBA upregulated the expression of one of the main anti-apoptotic genes: B-cell lymphoma protein 2 (BCL2) and estrogen receptor alpha (ER-α) gene. Moreover, it significantly increased breast lipid peroxidation and serum CA 15-3 but decreased breast antioxidant enzymatic activities (glutathione peroxidase, glutathione S-transferase, catalase, and superoxide dismutase). Nevertheless, administration of DMBA and graviola especially DMBA+G37 induced apoptosis through at least 1.5-fold in gene expression levels of pro-apoptotic genes: BCL2-associated X protein (BAX), tumor suppressor gene (P53), and cysteinyl-aspartic acid-protease-3 (caspase-3). A critical role of P53 in the regulation of the BCL2 and BAX has been reported. These proteins can determine if the cell undergoes apoptosis or cancels the process. Once the BAX gene activates caspase-3, there is no irreversible way toward cell death. Also, graviola ameliorated the DMBA effects on antioxidant enzymatic activities and tumor marker CA 15-3. This study concludes that graviola ameliorated DMBA-induced breast cancer potentially through upregulating apoptotic genes, downregulating the ER-α gene, increasing antioxidants, and decreasing lipid peroxidation levels.
Afficher plus [+] Moins [-]