Affiner votre recherche
Résultats 441-450 de 4,896
Biomass burning source identification through molecular markers in cryoconites over the Tibetan Plateau
2019
Li, Quanlian | Wang, Ninglian | Barbante, Carlo | Kang, Shichang | Callegaro, Alice | Battistel, Dario | Argiriadis, Elena | Wan, Xin | Yao, Ping | Pu, Tao | Wu, Xiaobo | Han, Yu | Huai, Yanping
Cryoconite is a dark, dusty aggregate of mineral particles, organic matter, and microorganisms transported by wind and deposited on glacier surfaces. It can accelerate glacier melting and alter glacier mass balances by reducing the surface albedo of glaciers. Biomass burning in the Tibetan Plateau, especially in the glacier cryoconites, is poorly understood. Retene, levoglucosan, mannosan and galactosan can be generated by the local fires or transported from the biomass burning regions over long distances. In the present study, we analyzed these four molecular markers in cryoconites of seven glaciers from the northern to southern Tibetan Plateau. The highest levels of levoglucosan and retene were found in cryoconites of the Yulong Snow Mountain and Tienshan glaciers with 171.4 ± 159.4 ng g⁻¹ and 47.0 ± 10.5 ng g⁻¹ dry weight (d.w.), respectively. The Muztag glacier in the central Tibetan Plateau contained the lowest levels of levoglucosan and retene with mean values of 59.8 ng g⁻¹ and 0.4 ± 0.1 ng g⁻¹ d.w., respectively. In addition, the vegetation changes and the ratios of levoglucosan to mannosan and retene indicate that combustion of conifers significantly contributes to biomass burning of the cryoconites in the Yulong Snow Mountain and Tienshan glacier. Conversely, biomass burning tracers in cryoconites of Dongkemadi, Yuzhufeng, Muztag, Qiyi and Laohugou glaciers are derived from the combustion of different types of biomass including softwood, hardwood and grass.
Afficher plus [+] Moins [-]Effects of mixtures of anticancer drugs in the benthic polychaete Nereis diversicolor
2019
da Fonseca, Tainá Garcia | Abessa, Denis M.S. | Bebianno, Maria João
The increasing consumption of anticancer drugs through single and/or combinatory chemotherapy worldwide raised concern regarding their toxicity burden in coastal zones. The toxicity of a mixture of three compounds involving the drugs cisplatin (CisPt), cyclophosphamide (CP) and tamoxifen (TAM) was determined on the marine polychaete Nereis diversicolor exposed to an increasing range of their concentrations, respectively: Mix A: 0.1 + 10 + 0.1 ng L−1; Mix B: 10 + 100 + 10 ng L−1; Mix C: 100 + 500 + 25 ng L−1; Mix D: 100 + 1000 + 100 ng L−1. Different endpoints were assessed, including disturbance in the burrowing behaviour, neurotoxicity (acetylcholinesterase – AChE activity), antioxidant enzymes (superoxide dismutase – SOD; catalase – CAT; selenium-dependent glutathione peroxidase – Se-GPx and total glutathione peroxidases T-GPx activities), biotransformation metabolism (glutathione-S-transferases - GST), lipid peroxidation (LPO) and genotoxicity (DNA damage). Biological effects of the mixtures of anticancer compounds on N. diversicolor were compared with previous studies about effects on the same biological model under single-drug exposure conducted with the same molecules. Regarding SOD activity, TAM showed an antagonist effect over CisPt and CP in mixtures C and D. In Mix D, there was a synergistic effect of TAM and CisPt that inhibited CAT activity and an additive interaction of CisPt and CP on the Phase II biotransformation enzyme. Drugs in Mix A also suppressed polychaetes' GST activity, although different from the respective single-drug responses, besides able to induce T-GPx activity, that was not sufficient to avoid oxidative damage and mid-grade DNA damage. Due to the absence of burrowing impairment in Mix A, mechanisms involved in neurotoxicity were other than the one driven by AChE alterations. At the intermediary concentrations (Mix B and C), only LPO occurred. Data from drugs individually may not predict the risks provided by mixtures.
Afficher plus [+] Moins [-]Impacts of microplastics on growth and health of hermatypic corals are species-specific
2019
Reichert, Jessica | Arnold, Angelina L. | Hoogenboom, Mia O. | Schubert, Patrick | Wilke, Thomas
Coral reefs are increasingly affected by the consequences of global change such as increasing temperatures or pollution. Lately, microplastics (i.e., fragments < 5 mm) have been identified as another potential threat. While previous studies have assessed short-term effects caused by high concentrations of microplastics, nothing is known about the long-term effects of microplastics under realistic concentrations. Therefore, a microcosm study was conducted and corals of the genera Acropora, Pocillopora, Porites, and Heliopora were exposed to microplastics in a concentration of 200 particles L⁻¹, relating to predicted pollution levels. Coral growth and health, as well as symbiont properties were studied over a period of six months. The exposure caused species-specific effects on coral growth and photosynthetic performance. Signs of compromised health were observed for Acropora and Pocillopora, those taxa that frequently interact with the particles. The results indicate elevated energy demands in the affected species, likely due to physical contact of the corals to the microplastics. The study shows that microplastic pollution can have negative impacts on hermatypic corals. These effects might amplify corals' susceptibility to other stressors, further contributing to community shifts in coral reef assemblages.
Afficher plus [+] Moins [-]Association of ambient air pollutants and birth weight in Ningbo, 2015–2017
2019
Li, Zhen | Yuan, Xiaoqi | Fu, Jianfei | Zhang, Lingyun | Hong, Lixia | Hu, Lingjie | Liu, Liya
Previous studies have suggested a change of birth weight linked with elevated ambient air pollutant concentrations during the pregnancy. However, investigations of the influence of higher pollutant levels on birth weight change are limited. The goal of this study is to evaluate whether the air pollution of Ningbo is associated with birth weight, and which trimester could be a window period for maternal exposure to air pollution. A total of 170,008 live births were selected in the Ningbo city of Zhejiang, China, from 2015 to 2017. We estimated the association between the decreased birth weight and the increased air pollutant concentrations in the three trimesters and full gestation. The effects of interaction among pollutants were identified using a co-pollutant adjustment model. An interquartile range increases in PM2.5 (10.55 μg/m3), SO2(4.6 μg/m3), CO (125.59 μg/m3), and O3 (14.54 μg/m3) concentrations during the entire gestation were associated with 3.65 g (95% confidence interval: −6.02 g, −1.29 g), 5.02 g (−6.89 g, −3.14 g), 2.64 g (−4.65 g, −0.63 g) and 2.9 g (−4.8 g, 1 g) decreases, respectively, in birth weight. With each interquartile range increment in NO2 concentration was associated with an 8.05 g (6.24 g, 9.85 g) increase in birth weight. In the first trimester, only the PM2.5 exposure seemed to be associated with the greatest decline in birth weight. After adjustment for co-pollutant, both PM2.5 and SO2 were still associated with birth weight, except for CO for O3 adjustment, O3 for SO2 adjustment, and O3 for NO2 adjustment. Maternal exposure to air pollution may be associated with a decrease of birth weight, but the contribution of various pollutants is necessary to verify by future research.
Afficher plus [+] Moins [-]Reprotoxicity of glyphosate-based formulation in Caenorhabditis elegans is not due to the active ingredient only
2019
Jacques, Mauricio Tavares | Bornhorst, Julia | Soares, Marcell Valandro | Schwerdtle, Tanja | Garcia, Solange | Ávila, Daiana Silva
Pesticides guarantee us high productivity in agriculture, but the long-term costs have proved too high. Acute and chronic intoxication of humans and animals, contamination of soil, water and food are the consequences of the current demand and sales of these products. In addition, pesticides such as glyphosate are sold in commercial formulations which have inert ingredients, substances with unknown composition and proportion. Facing this scenario, toxicological studies that investigate the interaction between the active principle and the inert ingredients are necessary. The following work proposed comparative toxicology studies between glyphosate and its commercial formulation using the alternative model Caenorhabditis elegans. Worms were exposed to different concentrations of the active ingredient (glyphosate in monoisopropylamine salt) and its commercial formulation. Reproductive capacity was evaluated through brood size, morphological analysis of oocytes and through the MD701 strain (bcIs39), which allows the visualization of germ cells in apoptosis. In addition, the metal composition in the commercial formulation was analyzed by ICP-MS. Only the commercial formulation of glyphosate showed significant negative effects on brood size, body length, oocyte size, and the number of apoptotic cells. Metal analysis showed the presence of Hg, Fe, Mn, Cu, Zn, As, Cd and Pb in the commercial formulation, which did not cause reprotoxicity at the concentrations found. However, metals can bioaccumulate in soil and water and cause environmental impacts. Finally, we demonstrated that the addition of inert ingredients increased the toxic profile of the active ingredient glyphosate in C. elegans, which reinforces the need of components description in the product labels.
Afficher plus [+] Moins [-]Progression of liver tumor was promoted by tris(1,3-dichloro-2-propyl) phosphate through the induction of inflammatory responses in krasV12 transgenic zebrafish
2019
Chen, Sheng | Dang, Yao | Gong, Zhiyuan | Letcher, Robert J. | Liu, Chunsheng
Tris(1,3-dichloro-2-propyl) phosphate (TDCIPP) has been detected in various environmental media and has been implicated as a weak mutagen or carcinogen, but whether TDCIPP can promote the progression of liver tumor remains unclear. In this study, krasⱽ¹² genetically modified zebrafish, Tg(fabp10:rtTA2s-M2; TRE2:EGFP-krasᴳ¹²ⱽ), a model system in which liver tumors can be induced by doxycycline (DOX), was used to evaluate the liver tumor promotion potential of TDCIPP. Briefly, krasⱽ¹² transgenic females were exposed to 0.3 mg/L TDCIPP, 20 mg/L DOX or a binary mixture of 0.3 mg/L TDCIPP with 20 mg/L DOX, and liver size, histopathology, and transcriptional profiles of liver were determined. Treatment with TDCIPP resulted in increased liver size and caused more aggressive hepatocellular carcinoma (HCC). Compared with the exposure to DOX, TDCIPP in the presence of DOX up-regulated the expression of genes relevant with salmonella infection and the toll-like receptor signaling pathway. These results implied an occurrence of inflammatory reaction, which was sustained by the increase in the amount of infiltrated neutrophils in the liver of Tg(lyz:DsRed2) transgenic zebrafish larvae whose neutrophils were labelled by red fluorescent protein under the lysozyme C promoter. Furthermore, compared with the binary exposure of DOX and TDCIPP, treatment with a ternary mixture of TDCIPP, DOX and inflammatory response inhibitor (ketoprofen) significantly decrease the liver size and the amounts of neutrophils in the livers of kras and lyz double transgenic zebrafish larvae. Collectively, our results suggested that TDCIPP could promote the liver tumor progression by induction of hepatic inflammatory responses.
Afficher plus [+] Moins [-]Mediterranean dirty edge: High level of meso and macroplastics pollution on the Turkish coast
2019
Gündoğdu, Sedat | Çevik, Cem
It has become apparent that the coastal zones of aquatic environments are significantly affected by plastics pollution. The accumulation of marine plastic litter on beaches is an important problem due to their significant environmental impacts. In this study, 13 coastal areas in Iskenderun Bay (NE Levantine coast of Turkey) were sampled in May 2018 to investigate meso and macroplastic (0.5–123.4 cm) pollution. A total of 1424 meso and macroplastic items in five categories (filament, film, foam, fragments, and pellets) were collected. The average meso and macroplastic concentration was 12.2 ± 3.5 pcs m−2 (12.3 ± 3.5 g m−2) and the mean size for all stations was 3.7 ± 0.16 cm. The highest meso and macroplastic concentration was found in the Dörtyol location (46.2 ± 7.6 pcs m−2) and the lowest concentration was found in the Y. Lagün location (2.3 ± 0.2 pcs m−2). Plastics were separated into 14 different groups based on their origins. The most dominant type was hard plastics (broken, fragmented, and deformed) with 59.8% and greenhouse coverage films with 11%. Our results shows that regardless their source plastics fluxes at beaches from various pathways. Results of this study provide useful information for designing monitoring strategies and setting management goals.
Afficher plus [+] Moins [-]Iron uptake by bloom-forming freshwater cyanobacterium Microcystis aeruginosa in natural and effluent waters
2019
Fu, Qing-Long | Fujii, Manabu | Natsuike, Masafumi | Waite, T David
Studies on Fe uptake by phytoplankton have been often conducted using artificial culture media. However, Fe chemistry in freshwater can be influenced by riverine anthropogenic impacts and other factors causing water quality changes. In this study, therefore, Fe uptake in natural (river and reservoir) and effluent waters was investigated for the notorious bloom-forming freshwater cyanobacterium Microcystis aeruginosa. To investigate the Fe uptake mechanism, a short-term incubational assay was conducted in the presence of light, Fe(II) ligand and Fe(III) reductant, with results consistently indicating that unchelated Fe(III) is the major substrate for Fe uptake by M. aeruginosa. Further assays using various freshwater samples indicated that Fe uptake is lower in natural waters compared to that of effluent waters and, interestingly, Fe uptake was found to be limited in natural waters. These results suggest that Fe limitation can be alleviated by the inflow of effluent waters. Statistical analysis with various water quality variables indicated that Fe availability is significantly influenced by concentrations of dissolved Fe and organic matter as well as specific UV absorbance (an index of aromaticity). Overall, findings of this study highlight that watershed anthropogenic activities exert important roles in Fe uptake by freshwater cyanobacteria via alteration of Fe speciation.
Afficher plus [+] Moins [-]Contributions of local pollution emissions to particle bioreactivity in downwind cities in China during Asian dust periods
2019
Ho, Kin-Fai | Wu, Kuan-Che | Niu, Xinyi | Wu, Yunfei | Zhu, Chong-Shu | Wu, Feng | Cao, Jun-Ji | Shen, Zhen-Xing | Hsiao, Ta-Chih | Chuang, Kai-Jen | Chuang, Hsiao-Chi
This study investigated the effects of pollution emissions on the bioreactivity of PM2.5 during Asian dust periods. PM2.5 during the sampling period were 104.2 and 85.7 μg m−3 in Xi'an and Beijing, respectively, whereas PM2.5 which originated from the Tengger Desert was collected (dust background). Pollution conditions were classified as non-dust days, pollution episode (PE), dust storm (DS)-1, and DS-2 periods. We observed a significant decrease in cell viability and an increase in LDH that occurred in A549 cells after exposure to PM2.5 during a PE and DS-1 in Xi'an and Beijing compared to Tengger Desert PM2.5. Positive matrix factorization was used to identify pollution emission sources. PM2.5 from biomass and industrial sources contributed to alterations in cell viability and LDH in Xi'an, whereas vehicle emissions contributed to LDH in Beijing. OC, EC, Cl−, K+, Mg2+, Ca, Ti, Mn, Fe, Zn, and Pb were correlated with cell viability and LDH for industrial emissions in Xi'an during DS. OC, EC, SO42−, S, Ti, Mn, and Fe were correlated with LDH for vehicle emissions in Beijing during DS. In conclusion, the dust may carry pollutants on its surface to downwind areas, leading to increased risks of particle toxicity.
Afficher plus [+] Moins [-]Application of a microalga, Scenedesmus obliquus PF3, for the biological removal of nitric oxide (NO) and carbon dioxide
2019
Ma, Shanshan | Li, Da | Yu, Yanling | Li, Dianlin | Yadav, Ravi S. | Feng, Yujie
Nitrogen oxide (NOx) emissions from flue gas lead to a series of environmental problems. Biological removal of Nitrogen oxide (NOx) from flue gas by microalgae is a potential approach for reducing the problems caused by these emissions. However, few microalgal strains are reported to remove NOx from flue gas. Here, a microalga strain PF3 (identified as Scenedesmus obliquus), which can remove NOx and fix CO₂ from flue gas is isolated. The tolerance of Scenedesmus obliquus PF3 to CO₂, NO, SO₂ and its adaptabilities to environmental factors (pH and temperature), and its performance in the removal of NO and CO₂ are investigated. Scenedesmus obliquus PF3 showed biomass accumulation when sparged with 15% CO₂ or 500 ppm NO or 50 ppm SO₂, and bisulfite less than 2 mM showed no toxicity to Scenedesmus obliquus PF3. Additionally, PF3 grew well in a wide range of pH and temperatures from 4.5 to 10.5 and 15 °C–30 °C, respectively. When sparged with simulated flue gas (100 ppm NO, 10% CO₂, (N₂ as balance gas)), the microalgae culture system removed NO and CO₂ at a rate of 2.86 ± 0.23 mg L⁻¹ d⁻¹ and 1.48 ± 0.12 g L⁻¹ d⁻¹, respectively, where up to 96.9 ± 0.03% (2.77 ± 0.08 mg L⁻¹ d⁻¹) and 87.7 ± 6.22% (1.29 ± 0.01 mg L⁻¹ d⁻¹) of the removed NO and CO₂, respectively, were assimilated in algal biomass. These results suggest that Scenedesmus obliquus PF3 is a promising candidate for NOx removal and carbon fixation of flue gas.
Afficher plus [+] Moins [-]