Affiner votre recherche
Résultats 441-450 de 4,938
Consumption of drinking water N-Nitrosamines mixture alters gut microbiome and increases the obesity risk in young male rats Texte intégral
2019
Zhu, Jianqiang | Kong, Yuan | Yu, Jie | Shao, Shuai | Mao, Manfei | Zhao, Meirong | Yue, Siqing
N-nitrosamines (NAs) are an emerging group of disinfection by-products that occur as a mixture in drinking water. Although the potency of the individual NA components in drinking water is negligible, their combined effect is rarely reported. We tested whether multicomponent NAs mixtures at environmentally relevant levels would produce significant effects when each component was combined at extremely low concentrations i.e. a million times lower than its No Observed Effect Concentration (NOEC). Mixture L (the maximum values detected in drinking water) or mixture M (one order of magnitude higher than detected) were fed to male and female Sprague-Dawley (SD) rats since PND 28 for seven days. We found that the body weight gains and the triglyceride (TG) levels increased significantly in mixture M treated male rats. Correspondingly, an obesogenic microbiota profile was obtained in the mixture M treated young male rat: Firmicutes/Bacteroidetes and the obesity-related taxa including Alistipes, Ruminococcus were enriched. Collectively, this is the first in vivo demonstration of NAs mixtures at environmentally relevant levels. Despite the complicated relationship between gut microbiota and obesity, our study has demonstrated that changes in gut microbiota may contribute to the development of obesity after the exposure. Our results highlight that changes in gut microbiota could be a risk factor for obesity, which emphasizes the need to include gut microbiota in the traditional mammalian risk assessment.
Afficher plus [+] Moins [-]Enhanced Cu(II)-mediated fenton-like oxidation of antimicrobials in bicarbonate aqueous solution: Kinetics, mechanism and toxicity evaluation Texte intégral
2019
Peng, Jianbiao | Zhang, Chaonan | Zhang, Ya | Miao, Dong | Zhang, Yaozong | Liu, Haijin | Li, Jinghua | Xu, Lei | Shi, Jialu | Liu, Guoguang | Gao, Shixiang
Increasing attention has been attracted in developing new technologies to remove chlorofene (CF) and dichlorofene (DCF), which were active agents in antimicrobials for general cleaning and disinfecting. This study investigated the significant influences of bicarbonate (HCO3−) on the degradation of CF and DCF in the Cu(II)-mediated Fenton-like system Cu2+/H2O2. Our results indicate that HCO3− may play a dual role to act 1) as a ligand to stabilize Cu(II), forming soluble [CuII(HCO3−)(S)]+ species to catalyze H2O2 producing hydroxyl radical (OH) and superoxide ion (O2−) and 2) as a OH scavenger. Furthermore, the reaction kinetics, mechanisms, and intermediates of CF and DCF were assessed. The apparent rate constants of CF and DCF were enhanced by a factor of 8.5 and 5.5, respectively, in the presence of HCO3− at the optimized concentration of 4 mM. Based on the intermediate identification and frontier electron densities (FEDs) calculations, the associated reaction pathways were tentatively proposed, including C–C scission, single or multiple hydroxylation, and coupling reaction. In addition, significant reduction in the aquatic toxicity of CF and DCF was observed after treatment with Cu2+/H2O2–HCO3- system, evaluated by Ecological Structure Activity Relationships (ECOSAR) program. These findings provide new insights into Cu(II)-mediated reactions to better understand the environmental fate of organic contaminants in carbonate-rich waters.
Afficher plus [+] Moins [-]The distribution variance of airborne microorganisms in urban and rural environments Texte intégral
2019
Liu, Huan | Hu, Zhichao | Zhou, Meng | Hu, Jiajie | Yao, Xiangwu | Zhang, Hao | Li, Zheng | Lou, Liping | Xi, Chuanwu | Qian, Haifeng | Li, Chunyan | Xu, Xiangyang | Zheng, Ping | Hu, Baolan
Microorganisms are ubiquitous in the atmosphere, where they can disperse for a long distance. However, it remains poorly understood how these airborne microorganisms vary and which factors influence the microbial distribution in different anthropogenic activity regions. To explore the regional differences of bacteria and fungi in airborne particles, PM₂.₅ and PM₁₀ samples were collected in the urban and rural areas of Hangzhou. The bacterial and fungal communities in the urban atmosphere was more similar to each other than those in the rural atmosphere. Analyses conducted by the concentration weighted trajectory model demonstrated that the local environment contributed more to the similarity of airborne bacteria and fungi compared with the atmospheric transport. The concentrations of local air pollutants (PM₂.₅, PM₁₀, NO₂, SO₂ and CO) were positively correlated with the similarity of the bacterial and fungal communities. Additionally, the concentrations of these air pollutants in the urban site were about 1.5 times than those in the rural site. This implicated that anthropogenic activity, which is the essential cause of air pollutants, influenced the similarity of airborne bacteria and fungi in the urban area. This work ascertains the outdoor bacterial and fungal distribution in the urban and the rural atmosphere and provides a prospective model for studying the contributing factors of airborne bacteria and fungi.
Afficher plus [+] Moins [-]Design and optimization of a new reactor based on biofilm-ceramic for industrial wastewater treatment Texte intégral
2019
Beni, Ali Aghababai | Esmaeili, Akbar
A biofilm reactor was designed with flat ceramic substrates to remove Co(II), Ni(II) and Zn(II) from industrial wastewater. The ceramics were made of clay and nano-rubber with high mechanical resistance. The surface of the ceramic substrate was modified with neutral fiber and nano-hydroxyapatite. A uniform and stable biofilm mass of 320 g with 2 mm of thickness was produced on the modified ceramic after 3 d. The micro-organisms were identified in the biofilm by polymerase chain reaction (PCR) method. Functional groups of biofilms were identified with a Fourier transform infrared spectrometer (FT-IR). Experiments were designed by central composite design (CCD) using the responsive surface method (RSM). The biosorption process was optimized at pH = 5.8, temperature = 22 °C, feed flux of heavy metal wastewater = 225 ml, substrate flow = 30 ml, and retention time = 7.825 h. The kinetic data was analyzed by pseudo first-order and pseudo second-order kinetic models. Isotherm models and thermodynamic parameters were applied to describe the biosorption equilibrium data of the metal ions on the biofilm-ceramic. The maximum biosorption efficiency and capacity of heavy metal ions were about 72% and 57.21 mg, respectively.
Afficher plus [+] Moins [-]Microplastic particles reduce reproduction in the terrestrial worm Enchytraeus crypticus in a soil exposure Texte intégral
2019
Lahive, Elma | Walton, Alexander | Horton, Alice A. | Spurgeon, David J. | Svendsen, Claus
Terrestrial environments are subject to extensive pollution by plastics and, based on the slow degradation of plastics, are likely to act as long term sinks for microplastic debris. Currently the hazards of microplastics in soil and the potential impacts on soil organisms is poorly understood. Particularly the role of particle characteristics, such a size or polymer type, in dose-response relationships for microplastics is not known. The aim of this study was to assess the ingestion and toxicity of nylon (polyamide) particles, in three different size ranges, to Enchytraeus crypticus in a soil exposure. Effects were also compared with those of polyvinyl chloride (PVC) particles, in a single size range. Nylon particle ingestion was confirmed using fluorescence microscopy, with greatest ingestion for particles in the smallest size range (13–18 μm). To investigate how particle size affected survival and reproduction, E. crypticus were exposed to nylon particles in two well-defined size ranges (13–18 and 90–150 μm) and concentrations of 20, 50, 90 and 120 g/kg (2–12% w/w). An intermediate nylon size range (63–90 μm) and a larger sized PVC particle (106–150 μm), both at 90 g/kg, were also tested. Survival was not affected by either of the polymer types or sizes. Reproduction was significantly reduced, in a dose-dependent manner, by the nylon particles at high exposure concentrations (>90 g/kg). Smaller size ranges (13–18 μm) had a greater effect compared to larger size ranges (>63 μm), with a calculated EC₅₀ for the 13–18 μm size range of 108 ± 8.5 g/kg. This greater hazard could be qualitatively linked with the ingestion of a greater number of smaller particles. This study highlights the potential for toxic effects of plastics in small size ranges to soil organisms at high exposure concentrations, providing understanding of the hazards microplastics may pose in the terrestrial environment.
Afficher plus [+] Moins [-]Occurrence of organic phosphates in particulate matter of the vehicle exhausts and outdoor environment – A case study Texte intégral
2019
Fabiańska, Monika J. | Kozielska, Barbara | Konieczyński, Jan | Bielaczyc, Piotr
The occurrence and concentrations of a wide range of organic phosphates (OPEs) in vehicle's exhaust (VPM), ambient air particulate matter (APM), and soil of various urban environments were researched. VPM comes from passenger cars, commercial vehicles, marine and bus engines emitted in New European Driving Cycle tests whereas APM was sampled in several sites of the Upper Silesia region (Poland). APM and VPM collected on filters and soil from the same locations as APM sampling sites were extracted with dichloromethane and extracts analyzed by gas chromatography-mass spectrometry. The OPEs found include aryl phosphates such as triphenyl phosphate (TPhP) and tricresyl phosphate (TCP), alkyl phosphates - triethyl phosphate (TEP), tripropyl phosphate (TPP), tributyl phosphate (TBP) and tri(butoxyethyl)phosphate (TBEP), and alkylchlorinated phosphates including tris-(2-chloroisopropyl) phosphate (TCiPP) and tris(2-chloroethyl) phosphate (TCEP). Occurrence and concentrations of these compounds in the PM investigated are highly variable. It was found that total concentrations in APM are directly related to traffic density in particular sites of the urban environment and a style of a vehicle driving. The highest emission of OPEs was found at a crossroad and city center sites where traffic is the densest and vehicles stops and starts are frequent. Village and residential areas were less exposed to OPEs emission. Since OPEs concentrations show exponential correlations to each other also human exposure to these compounds increases exponentially with increasing traffic density. High TEP and TBP level is tentatively proposed as an indicator of emission from petrol-fueled cars. Concentrations of OPEs in some soil are related to their emission to the air and resistance to degradation of a particular compound since only the most resistant TCiPP and TPhP were identified in soil extracts.
Afficher plus [+] Moins [-]Essential oil from Negramina (Siparuna guianensis) plants controls aphids without impairing survival and predatory abilities of non-target ladybeetles Texte intégral
2019
Toledo, Pedro F.S. | Ferreira, Taciano P. | Bastos, Isabela M.A.S. | Resende, Sarah M. | Viteri Jumbo, Luis O. | Didonet, Julcemar | Andrade, Bruno S. | Melo, Tarcisio S. | Smagghe, Guy | Oliveira, Eugênio E. | Aguiar, Raimundo W.S.
Plant essential oils are regarded as interesting alternative tools to be integrated into the management of pest insects. However, as they generally consist of mixtures of numerous molecules, the physiological basis for their action is unresolved. Here, we evaluated the effects of essential oil of the Neotropical plant Siparuna guianensis Aubl., commonly known as Negramina, against an important pest insect: the green peach aphid Myzus persicae (Sulzer), and also in two non-target natural enemies: the ladybeetle predators Coleomegilla maculata (DeGeer) and Eriopis connexa (Germar). In addition, we conducted a computational docking analysis for predicting the physical interactions between the two Negramina essential oil major constituents: β-myrcene and 2-undocanone, and the transient receptor potential (TRP) channels as potential binding receptors in the aphid and ladybeetles. As the most important results, Negramina essential oil caused mortality in M. persicae aphids with an LC95 = 1.08 mg/cm2, and also significantly repelled the aphids at concentrations as low as 0.14 mg/cm2. Our computational docking analysis reinforced such selectivity actions as the Negramina essential oil major compounds (i.e., β-myrcene and 2-undocanone) bound to the TRP channels of M. persicae but not to ladybeetle-related TRP channels. Interestingly, the exposure to the Negramina essential oil did not affect the predatory abilities of C. maculata but increased the abilities of E. connexa to prey upon M. persicae. Collectively, our findings provided a physiological basis for the insecticidal and selectivity potential of Negramina essential oil, reinforcing its potential as a tool to be used in integrated pest control programs.
Afficher plus [+] Moins [-]Occupational exposure to volatile organic compounds and health risks in Colorado nail salons Texte intégral
2019
Lamplugh, Aaron | Harries, Megan | Xiang, Feng | Trinh, Janice | Hecobian, Arsineh | Montoya, Lupita D.
Nail salon technicians face chronic exposure to volatile organic compounds (VOCs), which can lead to adverse health outcomes including cancer. In this study, indoor levels of formaldehyde, as well as benzene, toluene, ethylbenzene and xylene, were measured in 6 Colorado nail salons. Personal exposure VOC measurements and health questionnaires (n = 20) were also performed; questionnaires included employee demographics, health symptoms experienced, and protective equipment used. Cancer slope factors from the United States Environmental Protection Agency (US EPA) and anthropometric data from the Centers for Disease Control and Prevention were then used to estimate cancer risk for workers, assuming 20-yr exposures to concentrations of benzene and formaldehyde reported here. Results show that 70% of surveyed workers experienced at least one health issue related to their employment, with many reporting multiple related symptoms. Indoor concentrations of formaldehyde ranged from 5.32 to 20.6 μg m−3, across all 6 salons. Indoor concentrations of toluene ranged from 26.7 to 816 μg m−3, followed by benzene (3.13–51.8 μg m−3), xylenes (5.16–34.6 μg m−3), and ethylbenzene (1.65–9.52 μg m−3). Formaldehyde levels measured in one salon exceeded the Recommended Exposure Limit from the National Institute for Occupational Safety and Health. Cancer risk estimates from formaldehyde exposure exceeded the US EPA de minimis risk level (1 × 10−6) for squamous cell carcinoma, nasopharyngeal cancer, Hodgkin's lymphoma, and leukemia; leukemia risk exceeded 1 × 10−4 in one salon. The average leukemia risk from benzene exposure also exceeded the US EPA de minimis risk level for all demographic categories modeled. In general, concentrations of aromatic compounds measured here were comparable to those measured in studies of oil refinery and auto garage workers. Cancer risk models determined that 20-yr exposure to formaldehyde and benzene concentrations measured in this study will significantly increase worker's risk of developing cancer in their lifetime.
Afficher plus [+] Moins [-]Exchanges of nitrogen and phosphorus across the sediment-water interface influenced by the external suspended particulate matter and the residual matter after dredging Texte intégral
2019
Liu, Cheng | Du, Yiheng | Yin, Hongbin | Fan, Chengxin | Chen, Kaining | Zhong, Jicheng | Gu, Xiaozhi
Dredging is frequently implemented for the reduction of internal nitrogen (N) and phosphorus (P) loadings and the control of eutrophication. Residuals during dredging activities and external pollution loadings after dredging both commonly contribute to influence the effectiveness of dredging and have been widely discussed. In the current study, the exchanges of N and P across the sediment-water interface (SWI) to these two factors were compared in a six-month field incubation experiment. The results showed that the continuous deposition of external suspended particulate matter (SPM) led ammonium nitrogen (NH₄⁺N) and soluble reactive phosphorus (SRP) fluxes across the newly formed SWI to increase by factors of 4.16 and 12.71, respectively, while residual material caused the same fluxes to increase by factors of 2.06 and 5.06. Both the deposition of external SPM and the residual matter led to higher increase of the fluxes of P across the SWI than those of the fluxes of N across the SWI after dredging. The SPM easily adsorbed P in the water due to extensive adsorption of water soluble organic matter (consisting primarily of easily-decomposed humic-like substances), iron, and aluminum. However, the decomposition of organic matter in the SPM after the deposition on the dredged sediment accelerated the dissolution of redox-sensitive P and organic P across the SWI after dredging. Both the increase in the fluxes of N and P across the SWI would further increase the concentrations of N and P in the overlying water and thereby aggravate the eutrophication status in lakes. More frequent dredging operations might be necessary to reduce the fluxes of N and P from the sediment due to the continuous influence of the external SPM and the residual matter.
Afficher plus [+] Moins [-]Assessment of forest fire impacts on carbonaceous aerosols using complementary molecular marker receptor models at two urban locations in California's San Joaquin Valley Texte intégral
2019
Bae, Min-Suk | Skiles, Matthew J. | Lai, Alexandra M. | Olson, Michael R. | de Foy, Benjamin | Schauer, James J.
Two hundred sixty-three fine particulate matter (PM₂.₅) samples were collected over fourteen months in Fresno and Bakersfield, California. Samples were analyzed for organic carbon (OC), elemental carbon (EC), water soluble organic carbon (WSOC), and 160 organic molecular markers. Chemical Mass Balance (CMB) and Positive Matrix Factorization (PMF) source apportionment models were applied to the results in order to understand monthly and seasonal source contributions to PM₂.₅ OC. Similar source categories were found from the results of the CMB and PMF models to PM₂.₅ OC across the sites. Six source categories with reasonably stable profiles, including biomass burning, mobile, food cooking, two different secondary organic aerosols (SOAs) (i.e., winter and summer), and forest fires were investigated. Both the CMB and the PMF models showed a strong seasonality in contributions of some sources, as well as dependence on wind transport for both sites. The overall relative source contributions to OC were 24% CMB wood smoke, 19% CMB mobile sources, 5% PMF food cooking, 2% CMB vegetative detritus, 17% PMF SOA summer, 22% PMF SOA winter, and 12% PMF forest fire. Back-trajectories using the Weather Research and Forecasting model combined with the FLEXible PARTicle dispersion model (WRF-FLEXPART) were used to further characterize wind transport. Clustering of the trajectories revealed dominant wind patterns associated with varying concentrations of the different source categories. The Comprehensive Air Quality Model with eXtensions (CAMx) was used to simulate aerosol transport from forest fires and thus confirm the impacts of individual fires, such as the Rough Fire, at the measurement sites.
Afficher plus [+] Moins [-]