Affiner votre recherche
Résultats 441-450 de 6,546
Determination of non-extractable residues in soils: Towards a standardised approach Texte intégral
2020
Loeffler, Dirk | Hatz, Annika | Albrecht, Dinah | Fligg, Marvin | Hogeback, Jens | Ternes, Thomas A.
After exposure of soils to anthropogenic organic chemicals non-extractable residues (NER) can be formed. The quantitative proportion of a compound which remains non-extractable is operationally defined by the extraction procedure employed and can be quantified only when using isotope labelled compounds (e.g. ¹⁴C or ¹³C). In Germany and the EU, there is no standardised procedure, how to determine NER, especially when different legal regulations apply. Consequently, the comparability of NER data is low. Hence, a major task of this study was the development of a general approach for the quantification of non-extractable residues (NER) in soils using radiotracer analysis.For that, extraction efficiencies were determined for 42 non-labelled organic chemicals spiked onto 3 soils applying a number of extraction techniques and conditions, developing an extraction procedure which provides high extraction efficiencies and a low variability for a broad spectrum of analytes.Additionally, NER generated within soil transformation studies according to OECD 307 using ¹⁴C-triclosan, ¹⁴C-fenoxycarb and ¹⁴C-acetaminophen were analysed using sequential batch extraction and pressurised liquid extraction (PLE). Depending on the extraction procedure used, the NER fraction related to ¹⁴C-triclosan in a soil varied greatly between 96% and 28%.In this study a widely universal extraction procedure was developed to improve the comparability of the NER data and limit overestimation of NER, which can be of enormous consequence for the assessment of persistence and environmental risk of organic chemicals. Furthermore, silylation, EDTA-extraction and HCl-treatment were compared regarding a further analysis of NER using radiotracer analysis.
Afficher plus [+] Moins [-]Seasonal variability of extremely metal rich acid mine drainages from the Tharsis mines (SW Spain) Texte intégral
2020
Moreno González, Raúl | Cánovas, Carlos Ruiz | Olías, Manuel | Macías, Francisco
Seasonal variability of extremely metal rich acid mine drainages from the Tharsis mines (SW Spain) Texte intégral
2020
Moreno González, Raúl | Cánovas, Carlos Ruiz | Olías, Manuel | Macías, Francisco
The Tharsis mine is presently abandoned, but the past intense exploitation has left large dumps and other sulphide-rich mining wastes in the area generating acid mine drainages (AMD). The main goal of this work is to study the effect of hydrogeochemical processes, hydrological regime and the waste typology on the physicochemical parameters and dissolved concentrations of pollutants in a deeply AMD-affected zone. Extreme leachates are produced in the area, reaching even negative pH and concentrations of up to 2.2 g/L of As and 194 g/L of Fe. The results of the comparison of ore grades of sulphide deposits with dissolved concentrations in waters shows that Pb is the least mobile element in dissolution probably due to the precipitation of Pb secondary minerals and/or its coprecipitation on Fe oxyhydroxysulphates. Arsenic, Cr, and V are also coprecipitated with Fe minerals. Seasonal patterns in metal contents were identified: elements coming from the host rocks, such as Al, Mn and Ni, show their maximum values in the dry period, when dilution with freshwater is lower and the interaction of water-rock processes and evaporation is higher. On the other hand, As, Cr, Fe, Pb and V show minimum concentrations in the dry period due to intense Fe oxyhydroxysulphate precipitation. In this sense, large sulphide rich waste heaps would be a temporal sink of these elements (i.e. Pb, As, Cr and V) in the dry period, and a significant source upon intense rainfalls.
Afficher plus [+] Moins [-]Seasonal variability of extremely metal rich acid mine drainages from the Tharsis mines (SW Spain) Texte intégral
2020
Moreno González, Raúl | Ruiz Cánovas, Carlos | Olías, Manuel | Macías, F. | Ministerio de Economía y Competitividad (España) | European Commission
The Tharsis mine is presently abandoned, but the past intense exploitation has left large dumps and other sulphide-rich mining wastes in the area generating acid mine drainages (AMD). The main goal of this work is to study the effect of hydrogeochemical processes, hydrological regime and the waste typology on the physicochemical parameters and dissolved concentrations of pollutants in a deeply AMD-affected zone. Extreme leachates are produced in the area, reaching even negative pH and concentrations of up to 2.2 g/L of As and 194 g/L of Fe. The results of the comparison of ore grades of sulphide deposits with dissolved concentrations in waters shows that Pb is the least mobile element in dissolution probably due to the precipitation of Pb secondary minerals and/or its coprecipitation on Fe oxyhydroxysulphates. Arsenic, Cr, and V are also coprecipitated with Fe minerals. Seasonal patterns in metal contents were identified: elements coming from the host rocks, such as Al, Mn and Ni, show their maximum values in the dry period, when dilution with freshwater is lower and the interaction of water-rock processes and evaporation is higher. On the other hand, As, Cr, Fe, Pb and V show minimum concentrations in the dry period due to intense Fe oxyhydroxysulphate precipitation. In this sense, large sulphide rich waste heaps would be a temporal sink of these elements (i.e. Pb, As, Cr and V) in the dry period, and a significant source upon intense rainfalls. | This work was supported by the Spanish Ministry of Economic and Competitiveness through the projects CGL2016-78783-C2-1-R (SCYRE) and by H2020 European Institute of Innovation and Technology (EIT RawMaterials) through the projects Modular recovery process services for hydrometallurgy and water treatment (MORECOVERY). The authors thank to Prof. Yong Sik Ok (Associate Editor) and five different reviewers for their helpful comments that notably improved the quality of the manuscript. | Peer reviewed
Afficher plus [+] Moins [-]Methanogenic biodegradation of iso-alkanes and cycloalkanes during long-term incubation with oil sands tailings Texte intégral
2020
Siddique, Tariq | Semple, Kathleen | Li, Carmen | Foght, Julia M.
Microbes indigenous to oil sands tailings ponds methanogenically biodegrade certain hydrocarbons, including n-alkanes and monoaromatics, whereas other hydrocarbons such as iso- and cycloalkanes are more recalcitrant. We tested the susceptibility of iso- and cycloalkanes to methanogenic biodegradation by incubating them with mature fine tailings (MFT) collected from two depths (6 and 31 m below surface) of a tailings pond, representing different lengths of exposure to hydrocarbons. A mixture of five iso-alkanes and three cycloalkanes was incubated with MFT for 1700 d. Iso-alkanes were completely biodegraded in the order 3-methylhexane > 4-methylheptane > 2-methyloctane > 2-methylheptane, whereas 3-ethylhexane and ethylcyclopentane were only partially depleted and methylcyclohexane and ethylcyclohexane were not degraded during incubation. Pyrosequencing of 16S rRNA genes showed enrichment of Peptococcaceae (Desulfotomaculum) and Smithella in amended cultures with acetoclastic (Methanosaeta) and hydrogenotrophic methanogens (Methanoregula and Methanoculleus). Bioaugmentation of MFT by inoculation with MFT-derived enrichment cultures reduced the lag phase before onset of iso-alkane and cycloalkane degradation. However, the same enrichment culture incubated without MFT exhibited slower biodegradation kinetics and less CH₄ production, implying that the MFT solid phase (clay minerals) enhanced methanogenesis. These results help explain and predict continued emissions of CH₄ from oil sands tailings repositories in situ.
Afficher plus [+] Moins [-]Prenatal exposure to residential PM2.5 and anogenital distance in infants at birth: A birth cohort study from Shanghai, China Texte intégral
2020
Sun, Xiaowei | Liu, Cong | Wang, Ziliang | Yang, Fen | Liang, Hong | Miao, Maohua | Yuan, Wei | Kan, Haidong
Fine particulate matter (PM₂.₅) is believed to be one of the most hazardous air pollution with a ubiquitous presence. Animal studies have reported the association between prenatal exposure to traffic pollutant (not exclusively including PM₂.₅) and reproductive development in male offspring. However, the effects of prenatal exposure to PM₂.₅ on reproductive health in children are still unknown. The present study was based on the Shanghai-Minhang Birth Cohort Study (S-MBCS). A total of 876 pregnant women and their infants were included. Infants’ anogenital distance (AGD, the distance from the anus to the genitals; AGDap [anus-penis] and AGDas [anus-scrotum] for boys, and AGDac [anus-clitoris] and AGDaf [anus-fourchette] for girls) were measured at birth. PM₂.₅ concentrations during pregnancy were estimated using satellite based modeling approach. Multiple linear regression analysis and multiple informant model were conducted to examine the associations between prenatal exposure to PM₂.₅ (pre μg/m³) and offspring’s AGDs (mm). In order to minimize the misclassification of exposure, a sensitivity analysis restricted to mothers being off work during pregnancy was performed. In multiple linear regression models, we found that prenatal exposure to PM₂.₅ during the 1ˢᵗ and 3ʳᵈ trimesters was associated with shorter AGDs. In multiple informant model, similar patterns were found, and statistically significant reductions were observed in AGDap (β=−0.278, 95%CI: -0.343∼-0.212), AGDac (β=−0.188, 95%CI: -0.247∼-0.130) and AGDaf (β= −0.163, 95%CI: -0.238∼-0.088) with PM₂.₅ exposure during the 1ˢᵗ trimester, and AGDap (β=−0.201, 95%CI: -0.247∼-0.155), AGDas (β=−0.158, 95%CI: -0.198∼-0.117), AGDac (β=−0.128, 95%CI: -0.167∼-0.089) and AGDaf (β = −0.144, 95%CI: -0.194∼-0.094) with PM₂.₅ exposure during the 3ʳᵈ trimester. The sensitivity analysis restricted to women being off work during pregnancy showed similar results. PM₂.₅ exposure during the 1ˢᵗ and 3ʳᵈ trimesters was associated with shortened AGDs in offspring at birth. Our findings provide preliminary evidence that prenatal exposure to PM₂.₅ might be associated with the reproductive development of offspring.
Afficher plus [+] Moins [-]Effects of ambient particulate matter on fasting blood glucose: A systematic review and meta-analysis Texte intégral
2020
Ma, Runmei | Zhang, Yi | Sun, Zhiying | Xu, Dandan | Li, Tiantian
Studies have found that ambient particulate matter (PM) affects fasting blood glucose. However, the results are not consistent. We conducted a systematic review and meta-analysis to determine the relationship between PM with an aerodynamic diameter of 10 μm or less (PM₁₀) and PM with an aerodynamic diameter of 2.5 μm or less (PM₂.₅) and fasting blood glucose. We searched PubMed, Web of Science, the Wanfang Database and the China National Knowledge Infrastructure up to April 1, 2019. A total of 24 papers were included in the review, and 17 studies with complete or convertible quantitative information were included in the meta-analysis. The studies were divided into groups by PM size fractions (PM₁₀ and PM₂.₅) and length of exposure. Long-term exposures were based on annual average concentrations, and short-term exposures were those lasting less than 28 days. In the long-term exposure group, fasting blood glucose increased 0.10 mmol/L (95% CI: 0.02, 0.17) per 10 μg/m³ of increased PM₁₀ and 0.23 mmol/L (95% CI: 0.01, 0.45) per 10 μg/m³ of increased PM₂.₅. In the short-term exposure group, fasting blood glucose increased 0.02 mmol/L (95% CI: −0.01, 0.04) per 10 μg/m³ of increased PM₁₀ and 0.08 mmol/L (95% CI: 0.04, 0.11) per 10 μg/m³ of increased PM₂.₅. Further prospective studies are needed to explore the relationship between ambient PM exposure and fasting blood glucose.
Afficher plus [+] Moins [-]Novel understanding of toxicity in a life cycle perspective – The mechanisms that lead to population effect – The case of Ag (nano)materials Texte intégral
2020
Rodrigues, Natália P. | Scott-Fordsmand, Janeck J. | Amorim, Mónica J.B.
Silver (Ag) is amongst the most well studied nanomaterials (NMs), although most studies have only dealt with a single AgNM at a time and one biological endpoint. We here integrate the results of various testing-tools (endpoints) using a terrestrial worm, the standard ecotoxicological model organism Enchytraeus crypticus. Exposure spanned both water and soil exposure, it covered all life stages (cocoons, juveniles and adults), varying exposure durations (1-2-3-4-5-21 days), and covered 5 biological endpoints: hatching success, survival, reproduction, avoidance and gene expression (qPCR target genes GABA and Acetyl cholinesterase). We tested 4 Ag materials: PVP coated (PVP-AgNM), non-coated (NC-AgNM), the JRC reference Ag NM300K and AgNO₃. Results showed that short-term exposure via water to assess impact on cocoons’ hatching predicted longer term effects such as survival and reproduction. Moreover, if we extended the exposure from 11 to 17 day this allowed discrimination between hatch delay and impairment. Exposure of juveniles and adults via water showed that juveniles were most sensitive with survival affected. Across materials the following toxic ranking was observed: AgNO₃ ≥ Ag NM300K ≫ NC-AgNM ≥ PVP-AgNM. E. crypticus avoided AgNO₃ in a dose-response manner, avoiding most during the first 24 h. Avoidance of Ag NM300K and NC-AgNM only occurred during the first 24 h and the PVP coated AgNM were not avoided at all. The up-regulation of the GABA triggering anesthetic effects, indicated the high ecological impact of Ag materials in soil: Ag affects the GABAergic system hence organisms were not able to efficiently avoid and became intoxicated, this caused impacts in terms of survival and reproduction.
Afficher plus [+] Moins [-]Mn2+ effect on manganese oxides (MnOx) nanoparticles aggregation in solution: Chemical adsorption and cation bridging Texte intégral
2020
Cheng, Haijun | Yang, Tao | Jiang, Jin | Lu, Xiaohui | Wang, Panxin | Ma, Jun
Manganese oxides (MnOₓ) and Mn²⁺ usually co-exist in the natural environment, as well as in water treatments for Mn²⁺ removal. Therefore, it is necessary to investigate the influence of Mn²⁺ on the stability of MnOₓ nanoparticles, as it is vital to their fate and reactivity. In this study, we used the time-resolved dynamic light scattering technique to study the influence of Mn²⁺ on the initial aggregation kinetics of MnOₓ nanoparticles. The results show that Mn²⁺ was highly efficient in destabilizing MnOₓ nanoparticles. The critical coagulation concentration ratio of Mn²⁺ (0.3 mM) to Na⁺ (30 mM) was 2⁻⁶.⁶⁴, which is beyond the ratio range indicated by the Schulze-Hardy rule. This is due to the coordination bond formed between Mn²⁺ and the surface O of MnOₓ, which could efficiently decrease the negative surface charge of MnOₓ. As a result, in the co-presence of Mn²⁺ and Na⁺, a small amount of Mn²⁺ (5 μM) could efficiently neutralize the negative charge of MnOₓ, thereby decreasing the amount of Na⁺, which mainly destabilized nanoparticles through electric double-layer compression, required to initiate aggregation. Further, Mn²⁺ behaved as a cation bridge linking both the negatively charged MnOₓ and humic acid, thereby increasing the stability of the MnOₓ nanoparticles as a result of the steric repulsion of the adsorbed humic acid. The results of this study enhance the understanding of the stability of the MnOₓ nanoparticles in the natural environment, as well as in water treatments.
Afficher plus [+] Moins [-]Polycyclic musks in surface water and sediments from an urban catchment in the megacity Beijing, China Texte intégral
2020
Zhang, Handan | Bu, Qingwei | Wu, Dongkui | Yu, Gang
Two typical polycyclic musks (PCMs), namely 1,3,4,6,7,8-hexahydro-4,6,6,7,8,8-hexamethylcyclopenta-(g)-2-benzopyran (HHCB) and 7-acetyl-1,1,3,4,4,6-hexamethyl-1,2,3,4-tetrahydronaphthalene (AHTN), were determined in 63 surface water and 42 sediment samples collected from the North Canal River watershed, an urban catchment located in the megacity Beijing, China. Concentrations of HHCB and AHTN were 13.2 ng/L–395 ng/L and 2.98 ng/L–232 ng/L in surface water, while 4.10 ng/g–818 ng/g and 1.21 ng/g–731 ng/g in sediments. The results showed that PCM concentrations in the North Canal River watershed were at the high end when compared to that in other regions in China and worldwide. A watershed-wide annual mass budget showed that HHCB (∼150 kg/year) and AHTN (∼80 kg/year) mainly originated from urban wastewaters. Both PCMs were eliminated primarily by outflowing water (72 kg/year and 43 kg/year for HHCB and AHTN, respectively) and due to losses to the atmosphere (40 kg/year and 26 kg/year for HHCB and AHTN, respectively). An assessment of ecological risks posed by HHCB and AHTN to aquatic organisms in the North Canal River watershed was performed by using a tiered ecological risk assessment. The results showed that PCMs were unlikely to pose an ecological risk at the watershed scale (the probability of the incidence of adverse effect was <3.5% at the 99% protection level). However, according to the results from the risk quotient method, the tributaries draining wastewater effluents should be hotspots that warrant further research in future.
Afficher plus [+] Moins [-]A new thermoanalytical method for the quantification of microplastics in industrial wastewater Texte intégral
2020
Mallow, Ole | Spacek, Stefan | Schwarzböck, Therese | Fellner, Johann | Rechberger, Helmut
Plastics are crucial for our modern lifestyle and yet pose a major threat to our environment. Rising levels of microplastics (MP) in rivers and oceans are a big challenge for our economy and regulatory institutions as well as from a scientific point of view. Smaller microplastic particles, in particular, are especially hard to identify and even harder to quantify in environmental samples. Hence, we present a novel and inexpensive approach to quantify microplastics (MP) on a weight basis, relying on a thermoanalytical method. The Elemental Analysis combined with Overdetermined Equation Method (EA-OEM) was originally developed for determining the plastic content of refuse-derived fuels. It makes use of the distinct differences in the organic elemental composition (C, H, N, S, O) of plastics, biogenic and inorganic materials to calculate the (micro)plastic content on a detailed weight base. The study presented provides the first experimental results yielded from the application of the EA-OEM and two different laboratory approaches to the analysis of polyethylene (PE) and polypropylene (PP) MP content in industrial effluent samples from one source. In this way, it was possible to ensure that the polymer composition was known and the MP content therein (10–29%) could be derived. Further, the study reveals good MP recovery rates when applying the methodology to PE/PP-spiked samples.
Afficher plus [+] Moins [-]Immunotoxicity of microplastics and two persistent organic pollutants alone or in combination to a bivalve species Texte intégral
2020
Tang, Yu | Rong, Jiahuan | Guan, Xiaofan | Zha, Shanjie | Shi, Wei | Han, Yu | Du, Xueying | Wu, Fangzhu | Huang, Wei | Liu, Guangxu
Both microplastics and persistent organic pollutants (POPs) are ubiquitously present in natural water environment, posing a potential threat to aquatic organisms. While it has been suggested that the immune responses of aquatic organisms could be hampered by exposure to microplastics and POPs, the synergistic immunotoxic impact of these two types of pollutants remain poorly understood. In addition, little is known about the mechanism behind the immunotoxic effect of microplastics. Therefore, in the present study, the immunotoxicity of microplastics and two POPs, benzo[a]pyrene (B[a]P) and 17β-estradiol (E2), were investigated alone or in combination in a bivalve species, Tegillarca granosa. Evident immunotoxicity, as indicated by alterations of haemocyte count, blood cell composition, phagocytic activity, intracellular content of ROS, concentration of Ca²⁺ and lysozyme, and lysozyme activity, was revealed for both microplastics and the two POPs examined. In addition, the expression of six immune-, Ca²⁺ signalling-, and apoptosis-related genes was significantly altered by exposure of clams to the contaminants studied. Furthermore, the toxicity of POPs was generally aggravated by smaller microplastics (500 nm) and mitigated by larger ones (30 μm). This size dependent effect on POP toxicity may result from size dependent interactions between microplastics and POPs. Data obtained in this study also indicate that similar to exposure to B[a]P and E2, exposure to microplastics may hamper the immune responses of clams through a series of interdependent physiological and molecular processes.
Afficher plus [+] Moins [-]