Affiner votre recherche
Résultats 451-460 de 783
Electrokinetic Removal of Manganese from River Sediment Texte intégral
2009
Genç, Ayten | Chase, George | Foos, Annabelle
Manganese was removed from naturally polluted river sediment by applying an electrokinetic remediation technique. The sediment was alkaline and had 20% clay, which was mainly illite. The electrokinetic remediation experiments were performed by controlling pHs in the electrode cells and reverse electroosmotic flows were observed, i.e., water moved from cathode towards anode. Manganese accumulated in areas closer to cathode, however, other metals, such as copper, zinc and lead were mostly observed in the middle section of the sediment. As a result of reverse electroosmotic flow, the removal efficiencies of metals were low and the highest removal efficiencies of manganese, copper and lead, were evaluated as 18%, 20% and 12%, respectively. Almost no removal of zinc was observed in all electrokinetic remediation experiments.
Afficher plus [+] Moins [-]An Environmental Risk Assessment of Radon in Lantian Karst Cave of Shaanxi, China Texte intégral
2009
Lu, Xinwei | Li, Loretta Y. | Zhang, Xiaolan
The radiation dose and environmental health risk of radon concentration in the Lantian karst cave of China to guides and visitors were estimated based on the continuous radon concentration monitoring. Distinct seasonal variations were observed in the radon concentration of the air inside the cave. The maximum concentration occurred in the summer, whereas the minimum radon concentration occurred during the winter. The annual average radon concentration in the caves investigated is slightly higher than the upper bound of radon action level for underground space used in China and less than the upper bound of radon action level recommended by the International Commission on Radiation Protection (ICRP) for workplaces. The annual effective dose to tour guides working in two investigated caves varies from 4.1 to 16.5mSv, depending on different equilibrium factors together with different dose conversion factors proposed in the literature. The annual maximum time that a tour guide or other worker can safely be inside the cave is estimated to be 1,250 or 2,246h, depending on whether one bases this on the high or mean radon concentration, with an equilibrium factor of one in both cases. Given the synergistic effects of smoking, tour guides who are smokers should be in the cave only 10-20% of these hours. In all cases, the annual effective doses to visitors are well below the 1mSv maximum suggested dose for a member of the public for 1 year.
Afficher plus [+] Moins [-]Evaluation of Pb and Ni Mobility to Groundwater in Calcareous Urban Soils of Ancona, Italy Texte intégral
2009
Businelli, Daniela | Massaccesi, Luisa | Onofri, Andrea
This study was performed on 21 soils with the aim of establishing whether Pb and Ni adsorption/desorption parameters could be considered as good indicators of the risk of groundwater pollution. Results showed that high pH values in soil caused a totally irreversible Pb adsorption, thus excluding any risk of Pb groundwater pollution. Sorption/desorption studies, quantified by the desorption index (DI), showed that Ni retention was only partly affected by the basic pH values but it was also due to the electrostatic attraction processes occurring on soil surfaces, as demonstrated by the partial reversibility of the Ni sorbed. This justifies possible risks of Ni groundwater pollution. The results of a monitoring research confirmed these findings. Results suggested that the adsorption/desorption parameters, namely DI, are promising indicators to predict the risk of groundwater pollution from metals in calcareous soils.
Afficher plus [+] Moins [-]Effects of a Copper-Resistant Fungus on Copper Adsorption and Chemical Forms in Soils Texte intégral
2009
Du, Aixue | Cao, Lixiang | Zhang, Renduo | Pan, Rong
For bioremediation of copper-contaminated soils, it is essential to understand copper adsorption and chemical forms in soils related to microbes. In this study, a Penicillium strain, which can tolerate high copper concentrations up to 150 mmol l⁻¹ Cu²⁺, was isolated from a copper mining area. The objective was to study effects of this fungus on copper adsorptions in solutions and chemical forms in soils. Results from lab experiments showed the maximum biosorptions occurred at 360 min with 6.15 and 15.08 mg g⁻¹ biomass from the media with Cu²⁺ of 50 and 500 mg l⁻¹, respectively. The copper was quickly adsorbed by the fungus within the contact time of the first 60 min. To characterize the adsorption process of copper, four types of kinetics models were used to fit the copper adsorption data vs. time. Among the kinetics models, the two-constant equation gave the best results, as indicated by the high coefficients of determination (R ² = 0.89) and high significance (p < 0.01). The addition of the fungal strain to autoclaved soil facilitated increases in concentrations of acid-soluble copper, copper bound to oxides, and of copper bound to organic matter (p < 0.05). However, the inoculation of Penicillium sp. A1 led to a decrease of water-soluble copper in the soil. The results suggested that Penicillium sp. A1 has the potential for bioremediation of copper-contaminated soils.
Afficher plus [+] Moins [-]Roe Deer Antlers as Historical Bioindicators of Lead Pollution in the Vicinity of a Lead Smelter, Slovenia Texte intégral
2009
Pokorny, B. | Jelenko, I. | Kierdorf, U. | Kierdorf, H.
Roe deer (Capreolus capreolus) antlers are a useful tool for historical biomonitoring because they accumulate potential bone-seeking pollutants (Pb) and are naturally standardized environmental samples. Lead concentrations were measured in 45 antlers of roe deer, shot in the period 1925-2003 in the Upper Meža Valley, Slovenia, where lead production started at the end of the nineteenth century. Extremely high levels of lead were determined in the antlers (mean (SD) 54.7 (33.5) mg/kg, dry weight; range 2.69-554 mg/kg), exceeding previously reported levels of Pb in roe deer antlers from Europe. After the cessation of primary lead production in 1989, lead levels in antlers have been declining but are still high (period 2000-2003: mean (SD) 5.81 (6.60) mg/kg; range 2.69-7.74 mg/kg) compared with other areas of Slovenia. Spatial comparison confirmed that the lead contamination declines with distance from the emission source. The study confirmed the exceptional potential of roe deer antlers as a bioindicator of lead contamination of the environment.
Afficher plus [+] Moins [-]Residues of a Triazole Fungicide in Soil After 4 Years of Application to Sugar Beet Texte intégral
2009
Lucini, Luigi | Magistrati, Paloma | Molinari, Gian Pietro
An experimental study to investigate the potential soil accumulation of the triazole fungicide difenoconazole in soil was carried out in northwestern Italy. The fungicide was applied to sugar beet for 4 years with three applications per year at a rate of 75 g ha⁻¹ each, according to formulated product recommended use. Soil cores were collected each year before the first application, after each application and at harvest of the crop. The soil samples were then split into 0-10 and 10-40 cm depth layers, extracted and quantitatively analysed by gas chromatography for difenoconazole residues. The study evidenced that difenoconazole residues could be detected in the upper soil layer only, in quantities detectable after several applications (0.14 to 0.32 mg kg⁻¹ after the third application) which then become undetectable the following year. It can be concluded, therefore, that difenoconazole does not accumulate in soil.
Afficher plus [+] Moins [-]Biodegradation of Light Fuel Oils in Water and Soil as Determined by the Manometric Respirometric Method Texte intégral
2009
Karhu, M. | Kaakinen, J. | Kuokkanen, T. | Rämö, J.
In this biological oxygen demand (BOD) study, the manometric respirometric BOD OxiTop® method was used to monitor the biodegradation of two summer grade (SFO 1 and 2) and two winter grade light fuel oils (WFO 1 and 2) in OECD 301 F conditions, in groundwater, and in two different Finnish forest soils (mineral-poor and mineral-rich). The biodegradation measurements in the OECD 301 F conditions were carried out in two nutrient solutions for 28 days. In both solutions WFO 1 reached the highest biodegradation degree, 32% in the solution OECD 301 F, and 70% in a solution containing additional ammonium chloride. In groundwater conditions all the biodegradation degrees of fuel oils remained below 2% within the 28-day period. SFO 1 reached the highest 30 day biodegradability (4%) in mineral-poor soil, 18% in mineral-rich soil. In a 189-day measurement in a mineral-rich soil, the biodegradation degree for the SFO 1 was 94%. The manometric respirometric method proved to be a very suitable and practicable measurement method for the purpose of biodegradation studies of highly volatile light fuel oils, because in this method samples are treated to a lesser degree than in conventional methods, and dilutions are not needed. Results also indicated a considerable effect of conditions on the biodegradability in both water and soil environments. The results of these biodegradation studies could be used when planning in situ treatment methods based on natural biodegradation. In situ treatment methods are eco-efficient, and are especially suitable for sparsely populated sites.
Afficher plus [+] Moins [-]Identification of Lateral Macropore Flow in a Forested Riparian Wetland through Numerical Simulation of a Subsurface Tracer Experiment Texte intégral
2009
Elçi, Alper | Molz, Fred J.
Understanding wetland hydrogeology is important as it is coupled to internal geochemical and biotic processes that ultimately determine the fate of potential contaminant inputs. Therefore, there is a need to quantitatively understand the complex hydrogeology of wetlands. The main objective of this study was to improve understanding of saturated groundwater flow in a forested riparian wetland located on a golf course in the Lower Pee Dee River Basin in South Carolina, USA. Field observations that characterize subsurface wetland flow critical to solute transport originating from storm-generated runoff are presented. Monitoring wells were installed, and slug tests were performed to measure permeabilities of the wetland soil. A field-scale bromide tracer experiment was conducted to mimic the periodic loading of nutrients caused by storm runoff. This experiment provided spatial and temporal data on solute transport that were analyzed to determine travel times in the wetland. Furthermore, a 3-D numerical, steady-state flow model (MODFLOW) was developed to simulate subsurface flow in the wetland. A particle tracking model was subsequently used to calculate solute travel times from the wetland inlet to the outlet based on flow modeling results. It was evident that observed tracer breakthrough times were not typical of these measured wetland soil matrix conductivity values. Based on surface water sampling results at the wetland outlet, tracer arrival time was about 9 h after the injection of the tracer. These results implied an apparent mean K value of 2,050 m/day, which is 152 times larger than the mean of the measured values using slug tests (13.4 m/day). Modeling efforts clearly demonstrated this implied preferential flow behavior; particle travel times resulting from the calibrated flow model were in the order of hundreds of days, while actual travel times in the wetland were in the order of hours to a few days. This significant difference in travel times was attributed to the presence of macropores in the form of dead root channels and cavities forming a pipe-flow network. The analyses presented in this study resulted in an estimate of the ratio of matrix permeability to matrix plus macropore permeability of approximately 1/150. Eventually, the tracer test and resulting travel times between various points in the wetland were critical to understanding the true wetland flow dynamics. The final conceptual model of the hydraulic properties of the wetland soils comprised a low permeability matrix containing a web of high K macropores. Simulation of tracer transport in this system was possible using a flow model with significantly elevated K values.
Afficher plus [+] Moins [-]Influence of Metal Nanoparticles on the Soil Microbial Community and Germination of Lettuce Seeds Texte intégral
2009
Shah, Vishal | Belozerova, Irina
Short term influence of silica, palladium, gold and copper nanoparticles on a soil microbial community and the germination of lettuce seeds are investigated in this study at two different concentrations of nanoparticles. Results show a statistically insignificant influence of the nanoparticles in the soil on the number of colony forming units, peak areas of methyl ester of fatty acids in the FAME profile or on the total soil community metabolic fingerprint (P > 0.05). Also, all nanoparticles tested in the study influenced the growth of lettuce seeds as measured through shoot/root ratios of the germinated plant (P < 0.05).
Afficher plus [+] Moins [-]Age-Dependent Bioaccumulation of Organochlorine Compounds in Fish and their Selective Biotransformation in Top Predators from Lake Maggiore (Italy) Texte intégral
2009
Volta, Pietro | Tremolada, Paolo | Neri, Maria Chiara | Giussani, Gianluigi | Galassi, Silvana
Fish and piscivorous bird eggs collected in 2003 from Lake Maggiore (Italy), were analysed for PCB and DDT contamination. Lake Maggiore has been severely polluted by DDT through production of the pesticide within its catchment. Although agricultural application of DDT was banned in Italy in the 1978, industrial production continued until 1996, with enough contamination of water and soil for serious bioaccumulation in the lake biota. PCB and DDT concentrations in a whitefish (Coregonus macrophthalmus Nusslin 1882) were seen to be dependent on season and fish age, but not on sex. The average increase of the lipid-normalised concentration of DDTs and PCBs was two-fold across season and also across age, resulting in an overall increase of four fold. The seasonal variation was related to the eco-physiological cycle of the fish and to the contamination dynamic of the lake, while the effect of the fish age was explained on the base of biomagnification-related mechanisms. A fugacity model was applied to predict the age-dependent bioaccumulation potential of PCBs, whose concentrations were rather stable in recent years in the lake. Predicted values for compounds with negligible biotransformation were in good agreement with experimental data (calculated vs. experimental mean difference of 14%), and a relationship between the increase of experimental age-dependent concentration and K ow was observed. The good correspondence between the predicted and the measured values for most PCB congeners confirmed the general inability of fishes to biotransform these compounds. On the contrary, the importance of biotransformation processes was recognised in birds; eggs of a fish eating bird (Podiceps cristatus) from the same area selectively bioaccumulated p,p'-DDE. For PCBs, congener 149 appears to be completely metabolized by the bird species, and congeners 95, 101, 132, 151 and 174 were reduced as well. The role of the meta-para free position on at least one phenyl ring of PCB congeners in biotransformation processes was confirmed.
Afficher plus [+] Moins [-]