Affiner votre recherche
Résultats 451-460 de 5,151
Assessment tools for microplastics and natural fibres ingested by fish in an urbanised estuary Texte intégral
2018
Halstead, Jennifer E. | Smith, James A. | Carter, Elizabeth A. | Lay, Peter A. | Johnston, Emma L.
Microplastics and fibres occur in high concentrations along urban coastlines, but the occurrence of microplastic ingestion by fishes in these areas requires further investigation. Herein, the ingestion of debris (i.e., synthetic and natural fibres and synthetic fragments of various polymer types) by three benthic-foraging fish species Acanthopagrus australis (yellowfin bream), Mugil cephalus (sea mullet) and Gerres subfasciatus (silverbiddy) in Sydney Harbour, Australia has been quantified and chemically speciated by vibrational spectroscopy to identify the polymer type. Ingested debris were quantified using gut content analysis, and identified using attenuated total reflectance Fourier transform infrared (ATR-FTIR) and Raman microspectroscopies in combination with principal component analysis (PCA). The occurrence of debris ingestion at the time of sampling ranged from 21 to 64% for the three species, and the debris number ranged from 0.2 to 4.6 items per fish for the different species, with ∼53% of debris being microplastic. There was a significant difference in the amount of debris ingested among species; however, there was no difference among species when debris counts were standardised to fish weight or gut content weight, indicating that these species ingest a similar concentration of debris relative to their ingestion rate of other material. ATR-FTIR microspectroscopy successfully identified 72% of debris. Raman spectroscopy contributed an additional 1% of successful identification. In addition, PCA was used to non-subjectively classify the ATR-FTIR spectra resulting in the identification of an additional 9% of the debris. The most common microplastics found were polyester (PET), acrylic-polyester blend, and rayon (semi-synthetic) fibres. The potential of using Raman microspectroscopy for debris identification was investigated and provided additional information about the nature of the debris as well as the presence of specific dyes (and hence potential toxicity).
Afficher plus [+] Moins [-]Use of spatiotemporal characteristics of ambient PM2.5 in rural South India to infer local versus regional contributions Texte intégral
2018
Kumar, M Kishore | Sreekanth, V. | Salmon, Maëlle | Tonne, Cathryn | Marshall, Julian D.
This study uses spatiotemporal patterns in ambient concentrations to infer the contribution of regional versus local sources. We collected 12 months of monitoring data for outdoor fine particulate matter (PM₂.₅) in rural southern India. Rural India includes more than one-tenth of the global population and annually accounts for around half a million air pollution deaths, yet little is known about the relative contribution of local sources to outdoor air pollution. We measured 1-min averaged outdoor PM₂.₅ concentrations during June 2015–May 2016 in three villages, which varied in population size, socioeconomic status, and type and usage of domestic fuel. The daily geometric-mean PM₂.₅ concentration was ∼30 μg m⁻³ (geometric standard deviation: ∼1.5). Concentrations exceeded the Indian National Ambient Air Quality standards (60 μg m⁻³) during 2–5% of observation days. Average concentrations were ∼25 μg m⁻³ higher during winter than during monsoon and ∼8 μg m⁻³ higher during morning hours than the diurnal average. A moving average subtraction method based on 1-min average PM₂.₅ concentrations indicated that local contributions (e.g., nearby biomass combustion, brick kilns) were greater in the most populated village, and that overall the majority of ambient PM₂.₅ in our study was regional, implying that local air pollution control strategies alone may have limited influence on local ambient concentrations. We compared the relatively new moving average subtraction method against a more established approach. Both methods broadly agree on the relative contribution of local sources across the three sites. The moving average subtraction method has broad applicability across locations.
Afficher plus [+] Moins [-]Estimation of p,p’-DDT degradation in soil by modeling and constraining hydrological and biogeochemical controls Texte intégral
2018
Sanka, Ondrej | Kalina, Jiří | Lin, Yan | Deutscher, Jan | Futter, Martyn | Butterfield, Dan | Melymuk, Lisa | Brabec, Karel | Nizzetto, Luca
Despite not being used for decades in most countries, DDT remains ubiquitous in soils due to its persistence and intense past usage. Because of this it is still a pollutant of high global concern. Assessing long term dissipation of DDT from this reservoir is fundamental to understand future environmental and human exposure. Despite a large research effort, key properties controlling fate in soil (in particular, the degradation half-life (τₛₒᵢₗ)) are far from being fully quantified. This paper describes a case study in a large central European catchment where hundreds of measurements of p,p’-DDT concentrations in air, soil, river water and sediment are available for the last two decades. The goal was to deliver an integrated estimation of τₛₒᵢₗ by constraining a state-of-the-art hydrobiogeochemical-multimedia fate model of the catchment against the full body of empirical data available for this area. The INCA-Contaminants model was used for this scope. Good predictive performance against an (external) dataset of water and sediment concentrations was achieved with partitioning properties taken from the literature and τₛₒᵢₗ estimates obtained from forcing the model against empirical historical data of p,p’-DDT in the catchment multicompartments. This approach allowed estimation of p,p’-DDT degradation in soil after taking adequate consideration of losses due to runoff and volatilization. Estimated τₛₒᵢₗ ranged over 3000–3800 days. Degradation was the most important loss process, accounting on a yearly basis for more than 90% of the total dissipation. The total dissipation flux from the catchment soils was one order of magnitude higher than the total current atmospheric input estimated from atmospheric concentrations, suggesting that the bulk of p,p’-DDT currently being remobilized or lost is essentially that accumulated over two decades ago.
Afficher plus [+] Moins [-]Correlations and adsorption mechanisms of aromatic compounds on biochars produced from various biomass at 700 °C Texte intégral
2018
Yang, Kun | Jiang, Yuan | Yang, Jingjing | Lin, Daohui
Knowledge of adsorption behavior of organic contaminants on high heat temperature treated biochars is essential for application of biochars as adsorbents in wastewater treatment and soil remediation. In this study, isotherms of 25 aromatic compounds adsorption on biochars pyrolyzed at 700 °C from biomass including wood chips, rice straw, bamboo chips, cellulose, lignin and chitin were investigated to establish correlations between adsorption behavior and physicochemical properties of biochars. Isotherms were well fitted by Polanyi theory-based Dubinin-Ashtakhov (DA) model with three parameters, i.e., adsorption capacity (Q⁰) and adsorption affinity (E and b). Besides the negative correlation of Q⁰ with molecular maximum cross-sectional areas (σ) of organic compounds, positive correlations of Q⁰ with total pore volume (Vₜₒₜₐₗ) and average diameter of micropore (D) of biochars were observed, indicating that adsorption by biochars is captured by the pore-filling mechanism with molecular sieving effect in biochar pores. Linear solvation energy relationships (LSERs) of adsorption affinity (E) with solvatochromic parameters of organic compounds (i. e., αₘ and π∗) were established, suggesting that hydrophobic effect, π-π interaction and hydrogen-bonding interaction are the main forces responsible for adsorption. The regression coefficient (π₁) and intercept (C) of obtained LSERs are correlated with biochar H/C and Rₘᵢcᵣₒ, respectively, implying that biochars with higher aromaticity and more micropores have stronger π-π bonding potential and hydrophobic effect potential with aromatic molecule, respectively. However, hydrogen-bonding potential of biochars for organic molecules is not changed significantly with properties of biochars. A negative correlation of b with biochar H/C is also obtained. These correlations could be used to predict the adsorption behavior of organic compounds on high heat temperature treated biochars from various biomass for the application of biochars as sorbents and for the estimating of environmental risks of organic compounds in the present of biochars.
Afficher plus [+] Moins [-]Formation of disinfection by-products during chlorination of organic matter from phoenix tree leaves and Chlorella vulgaris Texte intégral
2018
Sun, Hongjie | Song, Xuhui | Ye, Ting | Hu, Junbiao | Hong, Huachang | Chen, Jianrong | Lin, Hongjun | Yu, Haiying
To better understand the precursor of disinfection by-products (DBPs) and provide useful information for water utilities to manage the drinking water, a study of DBP formation was conducted through chlorination of leaf organic matter (OM) from phoenix tree and algal OM from Chlorella vulgaris. DBPs investigated include trichloromethane (TCM), trichloroacetic acid (TCAA), dichloroacetic acid (DCAA), chloroacetic acid (CAA), dichloroacetonitrile (DCAN) and trichloroacetonitrile (TCNM). Results show that the specific yields (μg/mg C) of C-DBPs (TCM, CAA, DCAA and TCAA) from leaf OM were higher but the specific yields of N-DBPs (DCAN and TCNM) were lower than those from algal OM. Correlation analysis revealed that C-DBPs yields (μg/L) were significantly (p < 0.01) interrelated with each other (r = 0.937–0.996), and for each C-DBP, the hydrophobic OM contributed more to their formation (61–90% of total yields) as compared with hydrophilic OM. In spite of these characteristics, an in-depth examination was conducted revealing that the hydrophobicity and aromaticity of C-DBPs precursors were in the order of TCAA > DCAA & TCM > CAA. DCAN precursors were highly variable: they were dominated by hydrophobic OM (leaf OM: 86%) or hydrophilic OM (algal OM: 61%). Hydrophilic OM was the most important precursor for TCNM (76–79% of total yields), followed by hydrophobic neutral and base substances (29–45% of total yields), but the hydrophobic acids exhibited an inhibition role in TCNM formation.
Afficher plus [+] Moins [-]Review of plants to mitigate particulate matter, ozone as well as nitrogen dioxide air pollutants and applicable recommendations for green roofs in Montreal, Quebec Texte intégral
2018
Gourdji, Shannon
In urbanized regions with expansive impervious surfaces and often low vegetation cover, air pollution due to motor vehicles and other combustion sources, is a problem. The poor air quality days in Montreal, Quebec are mainly due to fine particulate matter and ozone. Businesses using wood ovens are a source of particulates. Careful vegetation selection and increased green roof usage can improve air quality. This paper reviews different green roofs and the capability of plants in particulate matter (PM), ozone (O3) as well as nitrogen dioxide (NO2) level reductions. Both the recommended green roof category and plants to reduce these pollutants in Montreal's zone 5 hardiness region are provided. Green roofs with larger vegetation including shrubs and trees, or intensive green roofs, remove air pollutants to a greater extent and are advisable to implement on existing, retrofitted or new buildings. PM is most effectively captured by pines. The small Pinus strobus ‘Nana’, Pinus mugho var. pumilio, Pinus mugho ‘Slowmound’ and Pinus pumila ‘Dwarf Blue’ are good candidates for intensive green roofs. Drought tolerant, deciduous broadleaved trees with low biogenic volatile organic compound emissions including Japanese Maple or Acer palmatum ‘Shaina’ and ‘Mikawa-Yatsubusa’ are options to reduce O3 levels. Magnolias are tolerant to NO2 and it is important in their metabolic pathways. The small cold-tolerant Magnolia ‘Genie’ is a good option to remove NO2 in urban settings and to indirectly reduce O3 formation. Given the emissions by Montreal businesses' wood ovens, calculations performed based on their respective complex roof areas obtained via Google Earth Pro indicates 88% Pinus mugho var. pumilio roof coverage can annually remove 92.37 kg of PM10 of which 35.10 kg is PM2.5. The removal rates are 4.00 g/m2 and 1.52 g/m2 for PM10 and PM2.5, respectively. This paper provides insight to addressing air pollution through urban rooftop greening.
Afficher plus [+] Moins [-]Exposure to the fungicide propamocarb causes gut microbiota dysbiosis and metabolic disorder in mice Texte intégral
2018
Wu, Sisheng | Jin, Cuiyuan | Wang, Yueyi | Fu, Zhengwei | Jin, Yuanxiang
Propamocarb (PM) is a widely used fungicide with property of affecting fatty acid and phospholipid biosynthesis in funguses. In this study, we explored its effects on mice gut microbiota and metabolism by exposing mice to 3, 30, and 300 mg/L PM through drinking water for a duration of 28 days. We observed that the transcription of hepatic genes related to regulate lipid metabolism were perturbed by PM exposure. The microbiota in the cecal contents and feces changed during or after PM exposure at phylum or genus levels. 16S rRNA gene sequencing for the cecal content revealed shifted in overall microbial structure after PM exposure, and operational taxonomic unit (OTU) analysis indicated that 32.2% of OTUs changed by 300 mg/mL PM exposure for 28 days. In addition, based on 1H NMR analysis,a total of 20 fecal metabolites mainly including succinate, short chain fatty acids, bile acids and trimethylamine were found to be significantly influenced by exposure to 300 mg/L PM.,. These metabolites were tightly correlated to host metabolism. Our findings indicated that high doses of PM exposure could disturb mice metabolism through, or partly through, altering the gut microbiota and microbial metabolites.
Afficher plus [+] Moins [-]Photocatalytic degradation of 4-amino-6-chlorobenzene-1,3-disulfonamide stable hydrolysis product of hydrochlorothiazide: Detection of intermediates and their toxicity Texte intégral
2018
Armaković, Sanja J. | Armaković, Stevan | Četojević-Simin, Dragana D. | Šibul, Filip | Abramović, Biljana F.
In this work we have investigated in details the process of degradation of the 4-amino-6-chlorobenzene-1,3-disulfonamide (ABSA), stable hydrolysis product of frequently used pharmaceutical hydrochlorothiazide (HCTZ), as one of the most ubiquitous contaminants in the sewage water. The study encompassed investigation of degradation by hydrolysis, photolysis, and photocatalysis employing commercially available TiO₂ Degussa P25 catalyst. The process of direct photolysis and photocatalytic degradation were investigated under different type of lights. Detailed insights into the reactive properties of HCTZ and ABSA have been obtained by density functional theory calculations and molecular dynamics simulations. Specifically, preference of HCTZ towards hydrolysis was confirmed experimentally and explained using computational study. Results obtained in this study indicate very limited efficiency of hydrolytic and photolytic degradation in the case of ABSA, while photocatalytic degradation demonstrated great potential. Namely, after 240 min of photocatalytic degradation, 65% of ABSA was mineralizated in water/TiO₂ suspension under SSI, while the nitrogen was predominantly present as NH4+. Reaction intermediates were studied and a number of them were detected using LC-ESI-MS/MS. This study also involves toxicity assessment of HCTZ, ABSA, and their mixtures formed during the degradation processes towards mammalian cell lines (rat hepatoma, H-4-II-E, human colon adenocarcinoma, HT-29, and human fetal lung, MRC-5). Toxicity assessments showed that intermediates formed during the process of photocatalysis exerted only mild cell growth effects in selected cell lines, while direct photolysis did not affect cell growth.
Afficher plus [+] Moins [-]Enhancement effect of earthworm (Eisenia fetida) on acetochlor biodegradation in soil and possible mechanisms Texte intégral
2018
Hao, Yueqi | Zhao, Lixia | Sun, Yang | Li, Xiaojing | Weng, Liping | Xu, Huijuan | Li, Yongtao
Acetochlor is a widely used chloroacetanilide herbicide and has posed environmental risks in soil and water due to its toxicity and high leaching capacity. Earthworm represents the dominant invertebrate in soil and can promote the decomposition of organic pollutants. The effect of earthworm on acetochlor degradation in soil was studied by soil column experiment with or without acetochlor and earthworm in sterile and natural soils. The degradation capacities of drilosphere components to acetochlor were investigated by microcosm experiments. Bacterial and fungal acetochlor degraders stimulated by earthworm were identified by high-throughput sequencing. The degradation kinetics of acetochlor suggested that both indigenous microorganisms and earthworm played important roles in acetochlor degradation. Acetochlor degradation was quicker in soil with earthworms than without earthworms, with the degradation rates increased by 62.3 ± 15.2% and 9.7 ± 1.7% in sterile and natural treatments respectively. The result was related to the neutralized pH, higher enzyme activities and enhanced soil microbial community diversity and richness in the presence of earthworms. Earthworm cast was the degradation hotpot in drilosphere and exhibited better anaerobic degradation capacity in microcosm experiments. The acetochlor degradation rate of cast in anaerobic environment was 12.0 ± 0.1% quicker than that in aerobic environment. Residual acetochlor in soil conferred a long-term impairment on fungal community, and this inhibition could be repaired by earthworm. Earthworm stimulated indigenous degraders like Sphingomonas and Microascales and carried suspected intestinal degraders like Mortierella and Escherichia_coli to degradation process. Cometabolism between nutrition cycle species and degraders in casts also contributed to its faster degradation rates. The study also presented some possible anaerobic degradation species like Rhodococcus, Pseudomonas_fulva and Methylobacillus.
Afficher plus [+] Moins [-]Maternal exposure to ambient air pollutant and risk of oral clefts in Wuhan, China Texte intégral
2018
Zhao, Jinzhu | Zhang, Bin | Yang, Shaoping | Mei, Hui | Qian, Zhengmin | Liang, Shengwen | Zhang, Yiming | Hu, Ke | Tan, Yafei | Xian, Hong | BeLue, Rhonda | Jordan, Savannah S. | Xu, Shunqing | Zheng, Tongzhang | Du, Yukai
Maternal exposure to ambient air pollution has been related to oral clefts in offspring; however, the epidemiologic evidence is equivocal. Especially, the association between high levels of exposure to ambient air pollution during pregnancy and oral clefts remains unclear. The objective of this study was to evaluate whether high levels of maternal exposure to PM2.5, PM10, O3, CO and SO2 are related to increased risk of oral clefts in Wuhan, China. A population-based study was conducted using cohort of 105,927 live-born infants, fetal deaths, and stillbirths during a two-year period from 2011 to 2013. For each participant, weekly and monthly averages of daily mean concentrations for each pollutant were estimated. Multiple logistic regression analyses were constructed to quantify the adjusted odds ratios (aORs) for the relationship between each air pollutant and oral clefts while controlling for key covariates. Using monthly averages, a cleft lip with or without cleft palate (CLP) was associated with PM2.5 (aORs 2nd month = 1.34, CI:1.19–1.49; aORs 3rd month=1.14, CI:1.02–1.28), PM10 (aORs 2nd month = 1.11, CI:1.00–1.23) and CO (aORs 2nd month = 1.31, CI:1.14–1.51; aORs 3rd month = 1.17, CI:1.03–1.33). A cleft palate only (CPO) was associated with PM2.5 (aORs 2nd month = 1.24, CI: 1.03–1.48), and O3 (aORs 2nd month = 1.21, CI: 1.03–1.42; aORs 3rd month = 1.18, CI: 1.02–1.37). Our findings reveal an association between air pollutants exposure and the risk of oral clefts. Future studies are needed to confirm these associations, and clarify the causality related to specific pollutants during the most relevant vulnerable exposure time windows for oral clefts during pregnancy.
Afficher plus [+] Moins [-]