Affiner votre recherche
Résultats 4531-4540 de 4,924
Use of multiple isotopes to evaluate the impact of mariculture on nutrient dynamics in coastal groundwater
2019
Pingping, Kang | Peng, Liu | Fuqiang, Wang
Nitrogen and phosphate dynamics in groundwater and surface waters (aquaculture ponds and effluents and drainage channels) in the two seasons (April and September 2015) were investigated in a reclaimed coastal region in China. Multiple isotopes (δ¹⁵N-NO₃⁻, δ¹⁸O-NO₃⁻, δ²H-H₂O, and δ¹⁸O-H₂O) associated with the concentrations of dissolved inorganic nitrogen and phosphate were analyzed to assess the environmental impact of mariculture on coastal waters. Low phosphate concentration in the effluents was released from aquaculture ponds. Nitrate accounted for a larger proportion of dissolved inorganic nitrogen in September in aquaculture ponds and effluents and drainage channels. The groundwater in the mariculture zone was enriched with dissolved nitrogen components. In the offshore direction, seawater and precipitation were supplement of the groundwater, with nitrate deriving from mixing aquaculture effluents and wastewater. Denitrification occurred in groundwater in September 2015.
Afficher plus [+] Moins [-]Analysis of potentially toxic metal constraints to apply sewage sludge in Portuguese agricultural soils
2019
Gomes, Luciano A. | Gabriel, Nuno | Gando-Ferreira, Licínio M. | Góis, José C. | Quina, Margarida J.
The application of sewage sludge (SS) in the soil can be a valuable way to increase its content of organic matter. However, the concentration of potentially toxic metal (PTM) in both SS and soil can hinder this route of management. Thus, the main objective of this work was to evaluate the compliance with the restrictions related to PTM contained in SS from wastewater treatment plants (WWTP) for agricultural land application. The regulatory constraints associated with SS and soil in respect to PTM (Cd, Cr, Cu, Ni, Pb, and Zn) were analyzed. These metals showed a deleterious effect on germination of Lepidium sativum seeds, and their phytotoxicity may be ranked as Cd > Cu > Cr(VI) > Cr(III) ~ Zn ~ Ni > Pb. Portuguese SS samples from different WWTP, from a national sludge management operator, and from the literature were considered. The results revealed that the content of these metals, in general, complies with the regulatory threshold values. The content of PTM in the soil is not restrictive to receive SS in at least 90% of the national territory. The assessment of ecological risk based on the geoaccumulation index (Igₑₒ), pollution index (PI), and potential ecological risk index (PERI) showed low risk for all metals. The exception was Igₑₒ of Cd, Cu, and Zn, which presented moderate to high level of pollution. According to the state of the art, no significant negative impacts have been detected on human health and the environment due to SS applications in the soil. Thus, in a country with low carbon content in the land and whenever compliance with regulations is achieved, the main route for SS management may be agricultural soil.
Afficher plus [+] Moins [-]Parametric and non-parametric convergence analysis of electricity intensity in developed and developing countries
2019
Solarin, Sakiru Adebola
This paper examines the pattern of convergence in electricity intensity in a sample of 79 countries. We apply the residual augmented least squares regression to the convergence of energy intensity. This method has been used in the convergence of per capita energy consumption but not convergence of energy intensity. Furthermore, in contrast to the previous studies which mainly used the conventional beta convergence approach to examine conditional convergence, we use a beta convergence method that is capable of identifying the actual number of countries that contribute to conditional convergence. The sigma and gamma convergences of electricity intensity are also examined. In addition to the full sample of countries, we also examine convergence in African countries, Asian and Oceanic countries, American countries and European countries, separately. Convergences in OECD and non-OECD countries are also examined, separately. In the full sample, the results show convergence exists in 54% of the countries in the total sample. There is convergence in 65% of the African countries, 61% of the American countries, 43% of the Asian and Oceanic countries and 33% of the European countries. In terms of the regional classification, it is also observed that convergence exists for 58% of the non-OECD countries and 31% of the OECD countries. There is evidence for sigma convergence in all the blocs with the exception of European and non-OECD countries. With the exception of African countries, there is evidence for gamma convergence in all the countries and the various blocs. The policy implications of the results are discussed.
Afficher plus [+] Moins [-]Pesticides in three rural rivers in Guangzhou, China: spatiotemporal distribution and ecological risk
2019
Tang, Xiao-Yan | Yang, Yang | Tam, Nora Fung-Yee | Tao, Ran | Dai, Yu-Nv
Frequent and widespread pesticide use is a major concern for both human and environmental health. The aim of this study was to screen for 19 pesticides in rural rivers in Guangzhou, China, evaluating the potential impact of detected pesticides on the local ecosystem. Sampling was performed in rural rivers in three environment types: agricultural, industrial, and unpolluted, with sampling of water and sediments in both wet and dry seasons. A total of 11 pesticides were detected overall and their spatiotemporal distribution in water and ecological risk were assessed. Five pesticides were detected at concentrations above 100 ng L⁻¹, with the highest concentration pesticides being dimethoate (1318 ng L⁻¹) in surface water and quinalphos (328 ng g⁻¹ dry weight (dw)) in sediments. The most commonly detected pesticides were chlorpyrifos, acetochlor, and butachlor with detection frequencies of 50–57% and 29–43%, in water and sediments, respectively. Samples from the agricultural rural river contained the most pesticides and at higher concentrations, as compared to industrial and unpolluted areas, especially during the wet season. Ecotoxicological risk assessment through Risk Quotients (RQs) showed that chlorpyrifos and fenvalerate pose high ecological risks in water and therefore, reduction of the source input of these pesticides is essential.
Afficher plus [+] Moins [-]How can the natural radiation background affect DNA integrity in angiosperm plant species at different altitudes in Rila Mountain (Southwest Bulgaria)?
2019
Climate changes and anthropogenic factors are the main factors contributing to the destruction of natural ecosystems. The aim of this study was to investigate the extent to which wild plants adapt to UV, gamma background, and gross beta activity, as well as the possible damage that can be recorded in plants growing at different altitudes in Rila Mountain. We used physicochemical, cytogenetic, and molecular methods. Our investigations were done on the nine plant species characteristic of the ecosystems in Rila Mountain at three altitudes: 1500 m, 1782 m, and 2925 m. The registered beta activity in the plants did not depend on the altitude of the habitats. Our results showed that wild plant species differ in their tolerance to the combined effect of UV and IR radiation as well as climate factors. The genotype plays a more important role than the difference in the habitat altitude. The comet assay adapted by us for these plant species showed that the DNA of Epilobium angustifolium L. (Onagraceae) growing at 1500 m was more susceptible to damage than that of Dactylis glomerata L. (Poaceae). Both these species growing at 1782 m did not show any increase in DNA damage evaluated as the level of DNA migration. The level of DNA damage in Pedicularis orthantha Griseb. (Orobanchaceae) at 2925 m was comparable to that at a lower altitude. Regarding the formation of micronuclei, grass species were more sensitive to UV- and IR-induced DNA damage than cereals. Our data imply the existence of specific protective mechanisms developed by plants to overcome DNA damage induced by stress factors.
Afficher plus [+] Moins [-]Induction of nuclear abnormalities in herring (Clupea harengus membras), flounder (Platichthys flesus), and Atlantic cod (Gadus morhua) collected from the southern part of the Gotland Basin—the Baltic Sea (2010–2017)
2019
Eight nuclear abnormalities of genotoxicity and cytotoxicity were studied in peripheral blood erythrocytes of herring (Clupea harengus membras), flounder (Platichthys flesus), and Atlantic cod (Gadus morhua) sampled (2010–2017) from the Polish and the Lithuanian Exclusive Economic Zones (EEZ) in the Baltic Sea. At all study stations, total genotoxicity (∑Gentox) was found to be higher than total cytotoxicity (∑Cytox). A significant time-related decrease in genotoxicity was detected in the Lithuanian EEZ (2015–2017), while in the Polish EEZ (2014–2016), the opposite tendency was revealed. The highest ∑Gentox and ∑Cytox values recorded in fish sampled at the study stations located relatively close to each other clearly indicate an increased environmental genotoxicity and cytotoxicity pressure for fish in these areas. Exceptionally high and high-level genotoxicity risks to herring followed by those to flounder and cod were determined at a higher percentage of the stations studied.
Afficher plus [+] Moins [-]Evaluation of underground hydraulic fracturing using transient electromagnetic method
2019
The effective area of hydraulic fracturing is the core index to evaluate its effects. Through conducting transient electromagnetic tests, this paper deals with the influential range of the underground hydraulic fracturing as well as water-cut detection and gas extraction in the fracturing area. The resistivity response law of the coal seam in hydraulic fracturing process is explored, and the water-bearing area is determined. The obtained results from the tests show that the water-cut areas of the coal seam, measured by anti-interference transient electromagnetic instrument after fracturing, are commonly placed in the low-resistance area of the transient test. Further, the variations of amplitude of the low-resistance area in various directions of the test line are different. According to the variation law of the apparent resistivity of the coal seam before and after fracturing, the effective influential area of the hydraulic fracturing is defined, and the influence range is evaluated to be 35 m. The water cut and the gas extraction tests of the coal seam before and after fracturing are performed. The results reveal that the growth of water content in the coal seam is inversely proportional to the distance from the hydraulic fracturing borehole. The effective fracturing zone with the increment of the water content reaching 0.2% is the effective fracturing zone, and the effective fracturing zone of #9 and #10 is 38 m. After hydraulic fracturing, the gas extraction concentration would be in the range of 25.4–75.4%, with the average of 70.22%, which is 21.22% higher than that of the original coal body. The net amount of the gas extraction after fracturing is about eight times of that before fracturing. The effective fracturing range, which is determined by transient electromagnetic, is verified successfully. Exploring the effective fracturing regions of the hydraulic fracturing process would be very helpful in improving the evaluation system of the hydraulic fracturing effect.
Afficher plus [+] Moins [-]Biogeochemical behavior of nickel under different abiotic stresses: toxicity and detoxification mechanisms in plants
2019
Nickel (Ni) is a ubiquitous and highly important heavy metal. At low levels, Ni plays an essential role in plants such as its role in urease, superoxide dismutase, methyl-coenzyme M reductase, hydrogenase, acetyl-coenzyme A synthase, and carbon monoxide dehydrogenase enzyme. Although its deficiency in crops is very uncommon, but in the past few years, many studies have demonstrated Ni deficiency symptoms in plants. On the other hand, high levels of applied Ni can provoke numerous toxic effects (such as biochemical, physiological, and morphological) in plant tissues. Most importantly, from an ecological and risk assessment point of view, this metal has narrow ranges of its essential, beneficial, and toxic concentrations to plants, which significantly vary with plant species. This implies that it is of great importance to monitor the levels of Ni in different environmental compartments from which it can enter plants. Additionally, several abiotic stresses (such as salinity and drought) have been reported to affect the biogeochemical behavior of Ni in the soil–plant system. Thus, it is also important to assess Ni behavior critically under different abiotic stresses, which can greatly affect its role being an essential or toxic element. This review summarizes and critically discusses data about sources, bioavailability, and adsorption/desorption of Ni in soil; its soil–plant transfer and effect on other competing ions; accumulation in different plant tissues; essential and toxic effects inside plants; and tolerance mechanisms adopted by plants under Ni stress.
Afficher plus [+] Moins [-]The detoxification of heavy metals from aqueous environment using nano-photocatalysis approach: a review
2019
Heavy metals are discharged into aquatic environment and causes serious problems to the environment, human’s health, and other organisms. The industrial effluents contain high concentration of heavy metals that should be treated by different technologies. Numerous technologies have been widely used for the remediation of heavy metals such as chemical precipitation, ion exchange, membrane filtration, adsorption, coagulation-flocculation, floatation, electrochemical treatment, bioremediation, and photocatalysis. Among these technologies, photocatalysis has gained much attention due to chemical, physical, and electrical properties of heterogeneous semiconductor nano-photocatalysis. Bismuth vanadate is an n-type semiconductor photocatalyst having 2.4 eV band gap that was widely used from several decades having three monoclinic, tetragonal, and tetragonal zircon structures, but it also have some limitation that can be overcome by modification with metals or non-metals to gain high removal efficiency of heavy metals. This modification can tune its photocatalytic properties like band gap, absorption capacity, and surface area resulting in high photocatalytic performance towards heavy metals detoxification.
Afficher plus [+] Moins [-]Genetic damage in human populations at mining sites in the upper basin of the San Jorge River, Colombia
2019
Cruz-Esquivel, Ángel | Marrugo-Negrete, José | Calao-Ramos, Clelia
Contamination with mining wastes affects the environmental health and public, especially the human populations that live in these environments. The aim of this study was to evaluate the genotoxicity and levels of mercury (Hg) and arsenic (As) in blood samples from human populations exposed to mining activities in the upper basin of the San Jorge River. A total of 100 individuals participated in the study, 50 as an exposed group (Bocas de Ure = 15 individuals, Mina el Alacrán = 19 individuals, Torno Rojo = 16 individuals) and 50 individuals participated as the control group. Hg and As contents in blood samples were analyzed with atomic absorption spectrophotometry. A comet assay in peripheral blood lymphocytes and a micronucleus (MN) cytome assay (BMCyt) in exfoliated buccal cells were used to assess the effects of exposure to heavy metals on human communities located in mining areas. Higher concentrations of Hg and As were observed in human populations located in mining areas. The comet assay and BMCyt data revealed DNA damage and cell death in human communities located in mining areas. A positive association between blood arsenic and genetic damage was found. These data confirm the public health risk of the population near mining sites. Our findings suggest that populations that live at sites close to mining activities have high contents of heavy metals and genotoxic effects, representing a risk to human health.
Afficher plus [+] Moins [-]