Affiner votre recherche
Résultats 461-470 de 7,351
A comparison of activated carbon remediation success in floodplain soils contaminated with DDT and its metabolites using ex situ and in situ experimentation Texte intégral
2022
Harwood, Amanda D. | Nutile, Samuel A. | Simpson, Adam M.
Remediation of hydrophobic organic contaminants using activated carbon is an effective means by which to clean up contaminated areas. Predicting remediation success using laboratory experimentation with soil, however, is unclear. Current remediation efforts involving activated carbon addition to floodplain soils downstream of the Velsicol Chemical Corporation Superfund Site (VCCSS) have offered the opportunity to directly compare in situ activated carbon remediation with laboratory experimentation. The objective of the current study was to compare bioaccumulation of DDT, DDD, and DDE (DDX) residues by earthworms (Eisenia fetida) exposed to laboratory-aged (LA) or field-aged (FA) soils from four locations. Samples were evaluated at 0-, 3-, and 9-months post-remediation to determine the ability of laboratory studies to predict in situ remediation. Floodplain soils downstream from the VCCSS were amended with 2% by weight activated carbon in the field and the laboratory, and then aged for 3- or 9-months. At 0-, 3-, and 9-months bioaccumulation assays were conducted with LA and FA soils and tissue concentrations were compared within study sites. In both LA and FA soils, activated carbon caused significant reductions (37.01–92.94%) in bioaccumulated DDX in earthworms. Field-collected worms showed a similar trend in reduction of bioaccumulated DDX, suggesting activated carbon remediation was successful in reducing bioavailable DDX for native organisms within the floodplain soils. The rate of reduction in bioavailable DDX, however, was significantly faster in LA soils (β = −0.189, p < 0.0001) compared to FA soils (β = −0.054, p < 0.0038). Differences in temperature and methods of activated carbon incorporation between LA and FA soils may account for the differences in remediation rate, suggesting laboratory experiments may overpredict the extent or speed in which remediation occurs in the field. Therefore, use of laboratory studies in predicting success of activated carbon remediation may be most effective when conditions mimic field remediation as closely as possible.
Afficher plus [+] Moins [-]Microplastic pollution in Bangladesh: Research and management needs Texte intégral
2022
Islam, Tariqul | Li, Yanliang | Rob, Md Mahfuzur | Cheng, Hefa
Microplastics are omnipresent in the terrestrial and aquatic environment, and are considered as a potentially serious threat to the biodiversity and ecosystem. Pollution of plastic debris and microplastics in the inland and marine environment has raised concerns in Bangladesh, which is one of the most densely populated countries in the world. This review summarizes the research progress on separation and characterization of microplastics, as well as their occurrence and sources in Bangladesh. Despite of the first total ban on plastic bags in the world introduced back in 2002, microplastics have been ubiquitously detected in the country's inland and marine environment, with the majority of them coming from secondary sources. The microplastics observed in Bangladesh were dominated by fibers, which were derived mainly from textile sources. Polyethylene (PE), polyethylene terephthalate (PET), polypropylene (PP), and polyvinylchloride (PVC) were the most abundant polymers found for microplastics in the marine and freshwater environment of Bangladesh. Along with the identified research priorities to improve the understanding on the ecotoxicological effect and fate of microplastics, extensive and in-depth studies are required to bridge the knowledge gaps to enable comprehensive risk assessment of microplastic pollution on local ecosystems and human health, while effective management of plastic wastes and their recycling are necessary to alleviate this problem in the country.
Afficher plus [+] Moins [-]Zero valent iron or Fe3O4-loaded biochar for remediation of Pb contaminated sandy soil: Sequential extraction, magnetic separation, XAFS and ryegrass growth Texte intégral
2022
Duan, Lunchao | Wang, Qianhui | Li, Jining | Wang, Fenghe | Yang, Hao | Guo, Binglin | Hashimoto, Yohey
In this study, the feasibility of using zero-valent iron (ZVI) and Fe₃O₄-loaded biochar for Pb immobilization in contaminated sandy soil was investigated. A 180-day incubation study, combined with dry magnetic separation, chemical extraction, mineralogical characterization, and model plant (ryegrass, namely the Lilium perenne L.) growth experiment was conducted to verify the performance of these two materials. The results showed that both amendments significantly transferred the available Pb (the exchangeable and carbonates fraction) into more stable fractions (mainly Fe/Mn oxides-bound Pb), and ZVI alone showed a better performance than the magnetic biochar alone. The magnetic separation and extended X-ray absorption fine structure (EXAFS) analysis proved that Fe (oxyhydr)oxides on aged ZVI particles were the major scavengers of Pb in ZVI-amended soils. In comparison, the reduced Pb availability in magnetic biochar-amended soil could be explained by the association of Pb with Fe/Mn (oxyhydr)oxides in aged magnetic biochar, also the possible precipitation of soil Pb with soluble anions (e.g. OH⁻, PO₄³⁻, and SO₄²⁻) released from magnetic biochar. ZVI increased ryegrass production while Fe₃O₄-loaded biochar had a negative effect on the ryegrass growth. Moreover, both markedly decreased the Pb accumulation in aboveground and root tissues. The simple dry magnetic separation presents opportunities for the removal of Pb from soils, even though the efficiencies were not high (17.5% and 12.9% of total Pb from ZVI and biochar-treated soils, respectively). However, it should be noted that the ageing process easily result in the loss of magnetism of ZVI while the magnetic biochar tends to be more stable and has high retrievability during the dry magnetic separation application.
Afficher plus [+] Moins [-]Characteristics and influencing factors of carbon fluxes in winter wheat fields under elevated CO2 concentration Texte intégral
2022
Liu, Chao | Wu, Zhurong | Hu, Zhenghua | Yin, Nan | Islam, A.R.M Towfiqul | Wei, Zhaowei
Elevated carbon dioxide (ECO₂) concentration has profound impacts on ecosystem carbon fluxes, with consequent changes in carbon sequestration and its feedback to climate change. Agroecosystem plays an essential role in global carbon sequestration. However, it is not well understood how the carbon fluxes of agroecosystem respond to increasing atmospheric CO₂ concentrations. In this study, an in-situ 2-year field experiment was conducted using open-top chamber with treatments including ambient CO₂ concentration (CK) and ambient plus 200 μmol mol⁻¹ (T) to investigate the characteristics and main factors influencing carbon fluxes during the 2017–2019 winter wheat growing seasons. Results showed that the dynamics of CO₂ fluxes under different treatments had similar seasonal trends, with the peak flux observed at the heading-filling stage. Compared to the CK, T treatment increased the cumulative amount of CO₂ (CAC) by 17.2% and 24.0% in 2017–2018 and 2018–2019 growing seasons, respectively. In addition, the seasonal CAC was highly dependent on treatment and varied with year, while there was no interactive effect of treatment and year (p > 0.05). ECO₂ concentration increased the biomass of wheat by an average of 8.28% over two growing seasons. There was a significant positive correlation between biomass and CAC, with biomass elucidating 52% and 76% of the variations in CAC under CK and T treatments, respectively. A good correlation was found between net ecosystem exchange (NEE) and environmental variables under different treatments. During the pre-milk ripening period, the NEE mainly depended on photosynthetically active radiation (PAR) and air temperature (Ta), while NEE was mainly controlled by PAR and soil water content (SWC) during the post-milk ripening period. Overall, the findings presented here demonstrate that the carbon exchange in wheat fields under different treatments serves as carbon sequestration, while ECO₂ concentration enhances the capacity of winter wheat fields to act as carbon sinks, which may have feedback to the climate system in the future.
Afficher plus [+] Moins [-]First long-term evidence of microplastic pollution in the deep subtropical Northeast Atlantic Texte intégral
2022
Reineccius, Janika | Waniek, J. J. (Joanna J.)
No anthropogenic pollutant is more widespread in the aquatic and terrestrial environment than microplastic; however, there are large knowledge gaps regarding its origin, fate, or temporal variations in the oceans. In this study, we analyzed sediment trap material from the deep subtropical Northeast Atlantic (2000 m) in a long-term record (2003–2015) to assess the role of the deep ocean as a potential sink of microplastics. Microplastic particles were identified in all 110 analyzed samples with flux rates of 1.13–3146.81 items d⁻¹ m⁻². Calculated microplastic mass fluxes ranged between 0.10 and 1977.96 μg d⁻¹ m⁻², representing up to 8% of the particle flux. Between years, the composition of the different polymers changed significantly, dominated by polyethylene, whose amount was correlated with the lithogenic input. The correlation between polyethylene and the lithogenic fraction was attributed to an air transport pathway from northeast Africa and surrounding regions. The second most abundant polymer detected in our study was polyvinyl chloride, which is not correlated with lithogenic or biogenic particle flux fractions. Instead, we observed seasonality for polyvinyl chloride with recurring high fluxes in winter before the plankton bloom and significantly lower amounts in summer. Other polymers identified were polypropylene, polyethylene terephthalate, and lower numbers of polystyrene and polymethyl methacrylate. The average microplastic particle size for all samples and polymers was 88.44 ± 113.46 μm, with polyethylene and polyvinyl chloride having the highest proportion of small particles (<100 μm). Our findings provide first insights into temporal variations of sinking microplastics, which are crucial for understanding the fate of plastic in the oceans.
Afficher plus [+] Moins [-]Ingestion and egestion of polystyrene microplastic fragments by the Pacific oyster, Crassostrea gigas Texte intégral
2022
Choi, Hoon | Im, Dong-Hoon | Park, Yun-Ho | Lee, Ju-Wook | Yoon, Sung-Jin | Hwang, Un-Ki
Marine microplastics (MPs) pose a risk to human health through accumulation in maricultural organisms, particularly bivalves. Various studies have reported the presence of MP particles in Pacific oysters (Crasostrea gigas). In this study, we investigated the size-specific ingestion and egestion of polystyrene (PS) MPs by Pacific oysters. The cultivation density of C. gigas was maintained at 1 L of filtered seawater per oyster (n = 5) during the MP ingestion and egestion experiments. On exposure to 300 n/L of PS MP fragments for 7 d, 60.4% of the PS was ingested within 6 h (7.25 × 10² ± 1.36 × 10² n/indv.), and the ingestion was saturated at 12 h (1.2 × 10³ ± 2.2 × 10² n/indv.) in C. gigas. The maximum MP ingestion capacity (Igₘₐₓ) of a single Pacific oyster was 73.0 ± 16.3 n/g wet weight. Further, 62.9% of the PS MP particles were egested for 7 d from the saturated single C. gigas. Ingestion and egestion varied according to the PS MP size. In the case of <50 μm PS MP, ingestion rate was low but MP amount and net-ingestion efficiency was significantly higher than other PS MP sizes. In addition, egestion, egestion rate, and net-egestion efficiency for <50 μm PS MPs were significantly higher than other PS MP sizes. Therefore, smaller MPs (<50 μm) normally exhibit the highest ingestion and egestion rates; therefore, the 50–300 μm size fraction exhibited the highest residual possibility (particles >1000 μm were excluded). Additionally, considering the net-egestion efficiency, the most economical and efficient depuration period was 24 h. This study clarifies the size-specific MP accumulation in oysters, and the egestion results suggest that the potential risk of MPs to human health through the intake of maricultural products could be reduced by depuration.
Afficher plus [+] Moins [-]Ellagic acid ameliorates paraquat-induced liver injury associated with improved gut microbial profile Texte intégral
2022
Qi, Ming | Wang, Nan | Xiao, Yuxin | Deng, Yuankun | Zha, Andong | Tan, Bie | Wang, Jing | Yin, Yulong | Liao, Peng
Paraquat, a widely used herbicide, causes environmental pollution, and liver injury in humans and animals. As a natural compound in fruits, ellagic acid (EA) shows anti-inflammatory and antioxidant effects. This study examines the beneficial effects of dietary EA against the paraquat-induced hepatic injury and further explores the underlying molecular mechanisms using a piglet model. Post-weaning piglets are fed basal diet supplemented with 50 mg/kg, 100 mg/kg, or 200 mg/kg EA for 3 weeks. At week 2, hepatic injury is induced by 4 mg/kg paraquat followed by 7 days recovery. EA supplementation significantly mitigates paraquat-induced hepatic fibrosis, steatosis, and high apoptotic rate. In agreement, EA supplementation reduces serum pro-inflammatory levels, ameliorates inflammatory cells infiltration into hepatic tissue, which are associated with suppressed NF-κB signaling during paraquat exposure. In addition, EA supplementation significantly improves activities of antioxidative enzymes which were correlated with activated Nrf2/Keap 1 signaling during paraquat exposure. Furthermore, EA supplementation restores cecal microbial community during paraquat exposure. The protective effect of EA is strongly linked with increased relative abundance of Lactobacillus reuteri and Lactobacillus amylovorus. Taken together, EA supplementation effectively reduced the occurrence of hepatic oxidative damage and inflammation induced by paraquat through modulating cecal microbial communities, which provides a novel nutritional therapeutic strategy for hepatic injury.
Afficher plus [+] Moins [-]Long-term PM0.1 exposure and human blood lipid metabolism: New insight from the 33-community study in China Texte intégral
2022
Zhang, Wangjian | Gao, Meng | Xiao, Xiang | Xu, Shu-Li | Lin, Shao | Wu, Qi-Zhen | Chen, Gong-Bo | Yang, Bo-Yi | Hu, Liwen | Zeng, Xiao-Wen | Hao, Yuantao | Dong, Guang-Hui
Ambient particles with aerodynamic diameter <0.1 μm (PM₀.₁) have been suggested to have significant health impact. However, studies on the association between long-term PM₀.₁ exposure and human blood lipid metabolism are still limited. This study was aimed to evaluate such association based on multiple lipid biomarkers and dyslipidemia indicators. We matched the 2006–2009 average PM₀.₁ concentration simulated using the neural-network model following the WRF-Chem model with the clinical and questionnaire data of 15,477 adults randomly recruited from 33 communities in Northeast China in 2009. After controlling for social demographic and behavior confounders, we assessed the association of PM₀.₁ concentration with multiple lipid biomarkers and dyslipidemia indicators using generalized linear mixed-effect models. Effect modification by various social demographic and behavior factors was examined. We found that each interquartile range increase in PM₀.₁ concentration was associated with a 5.75 (95% Confidence interval, 3.24–8.25) mg/dl and a 6.05 (2.85–9.25) mg/dl increase in the serum level of total cholesterol and LDL-C, respectively. This increment was also associated with an odds ratio of 1.25 (1.10–1.42) for overall dyslipidemias, 1.41 (1.16, 1.73) for hypercholesterolemia, and 1.90 (1.39, 2.61) for hyperbetalipoproteinemia. Additionally, we found generally greater effect estimates among the younger participants and those with lower income or with certain behaviors such as high-fat diet. The deleterious effect of long-term PM₀.₁ exposure on lipid metabolism may make it an important toxic chemical to be targeted by future preventive strategies.
Afficher plus [+] Moins [-]Adsorptive removal of metformin on specially designed algae-lignocellulosic biochar mix and techno-economic feasibility assessment Texte intégral
2022
De Bhowmick, Goldy | Briones, Rowena M. | Thiele-Bruhn, Sören | Sen, Ramkrishna | Sarmah, Ajit K.
Batch sorption of metformin hydrochloride (MET) onto a specially designed biochar mix consisting of both macro (MAC) and micro (MIC) algae, rice husk and pine sawdust was conducted. Pyrolysis of both MAC and MIC algae mixture was done followed by chemical activation with hydrogen-peroxide. Additionally, sorption of MET under the influence of pH was separately investigated. Batch studies of isotherms were well described by Freundlich model with high non-linearity and Freundlich exponent values ranged anywhere from 0.12 to 1.54. Heterogeneity of MET adsorption to the bonding sites was attributed to the surface functional groups of the modified biochar. Amongst the four biochars, the activated macroalgae biochar (MACAC) and microalgae biochar (MICAC) depicted favourable adsorption of MET with maximum adsorption at pH 7. Up to 76% of MET removal from the environment was obatained using the MACAC biochar. Scanning electron micrographs coupled with energy dispersive X-ray, as well as elemental analyses confirmed formation of oxygen containing surface functional groups due to activation strengthening chemisorption as the main sorption mechanism. Further, Fourier transform infra-red spectroscopy and other surface functional group analyses along with Zeta potential measurements reinforced our proposed sorption mechanism. Lowest zeta potential observed at pH 7 enhanced the electrostatic force of attraction for both the biochars. Negative zeta potential value of the biochars under different pH indicated potential of the biochars to adsorb other positively charged contaminants. From a techno-economic perspective, capital expenditure cost is not readily available, however, it is envisaged that production of pyrolyzed biochar from algal biomass could make the process economically attractive especially when the biochar could be utilised for high-end applications.
Afficher plus [+] Moins [-]PFAS in drinking water and serum of the people of a southeast Alaska community: A pilot study Texte intégral
2022
Babayev, Maksat | Capozzi, Staci L. | Miller, Pamela | McLaughlin, Kelly R. | Medina, Samarys Seguinot | Byrne, Samuel | Zheng, Guomao | Salamova, Amina
Per- and polyfluoroalkyl substances (PFAS) have become a target of rigorous scientific research due to their ubiquitous nature and adverse health effects. However, there are still gaps in knowledge about their environmental fate and health implications. More attention is needed for remote locations with source exposures. This study focuses on assessing PFAS exposure in Gustavus, a small Alaska community, located near a significant PFAS source from airport operations and fire training sites. Residential water (n = 25) and serum (n = 40) samples were collected from Gustavus residents and analyzed for 39 PFAS compounds. In addition, two water samples were collected from the previously identified PFAS source near the community. Fourteen distinct PFAS were detected in Gustavus water samples, including 6 perfluorinated carboxylic acids (PFCAs), 7 perfluorosulfonic acids (PFSAs), and 1 fluorotelomer sulfonate (FTS). ΣPFAS concentrations in residential drinking water ranged from not detected to 120 ng/L. High ΣPFAS levels were detected in two source samples collected from the Gustavus Department of Transportation (14,600 ng/L) and the Gustavus Airport (228 ng/L), confirming these two locations as a nearby major source of PFAS contamination. Seventeen PFAS were detected in serum and ΣPFAS concentrations ranged from 0.0170 to 13.1 ng/mL (median 0.0823 ng/mL). Perfluorooctanesulfonic acid (PFOS) and perfluorohexanesulfonic acid (PFHxS) were the most abundant PFAS in both water and serum samples and comprised up to 70% of ΣPFAS concentrations in these samples. Spearman's correlation analysis revealed PFAS concentrations in water and sera were significantly and positively correlated (r = 0.495; p = 0.0192). Our results confirm a presence of a significant PFAS source near Gustavus, Alaska and suggest that contaminated drinking water from private wells contributes to the overall PFAS body burden in Gustavus residents.
Afficher plus [+] Moins [-]