Affiner votre recherche
Résultats 461-470 de 560
Fabrication of Tin and Zinc Gas Diffusion Electrodes for Electrochemical Reduction of Carbon Dioxide
2024
R. M. H. H. Jayarathne, A. R. Nihmiya, A. H. L. R. Nilmini and P. K. D. D. P. Pitigala
This study explores the electrochemical reduction of carbon dioxide (CO2) using tin (Sn) and zinc (Zn) catalyst-loaded gas diffusion electrodes (GDEs). The research explores the influence of electrolytic potential and catalyst loading on the efficiency of CO2 conversion to valuable chemicals, specifically formic acid and carbon monoxide. The best Sn loading for Sn-loaded GDEs, according to the morphological study, is 7 mg.cm-2, which results in higher current density (0.33 mA.cm-2) and current efficiency (36%). An electrolytic potential of -1.3 V Vs. Ag/AgCl is identified as optimal for Sn GDEs, offering a balance between high current efficiency (35%) and controlled current density. For Zn-loaded GDEs, an optimal loading of 5 mg.cm²- yields the highest current efficiency of 19.4% and a peak current density of 0.28 mA.cm²- at an electrolytic potential of -1.55 V Vs. Ag/AgCl, in addition to highlighting the crucial role that catalyst loading and electrolytic potential play in enhancing CO2 reduction efficiency, this research offers insightful information for environmentally friendly CO2 conversion technology.
Afficher plus [+] Moins [-]Forensic Identification and Isolation of Pathogenic Bacteria From Raw Vegetables and Fruits
2024
Anuradha Sharma and Sakshi Manhas
The consumption of contaminated fruits and vegetables is the prime cause of outbreaks of various human diseases. Although fruits and vegetables have high nutritional value, today because of their contamination during handling while performing harvesting and post-harvesting techniques, they are harmful to human health. Most of them are eaten raw without being washed or without providing any treatment. Vegetables and fruits, being rich nutritional sources, can act as carriers or vectors of pathogenic microorganisms, which can create a serious issue for the health of the community targeted. This entire research is based on an emerging field of Forensic Microbiology. Various types of microbial agents can be utilized as bioweapons to conduct the bio crime or bioterrorism through food and water. This research also represents that the identification of microbial agents is very much necessary for the welfare of humans. Identification and isolation of different pathogenic bacteria from raw vegetables and fruits can also shed some light on the terms of the necessity of Forensic Microbiology.
Afficher plus [+] Moins [-]Sustainable Water Conservation and Management Practices: A Perception Survey of the Farmers of Haryana, India
2024
Manika Kohli and Vinakshi Grover
In order to ensure water sustainability, alarming levels of water scarcity across the globe is a critical issue warranting urgent address. The present study aims to bring to light the perception of farmers regarding water conservation and management practices from the selected five districts of the Haryana region of India. By analyzing the responses of 125 farmers, collected through a self-administered questionnaire, the impact of socio-demographic factors, current irrigation system, and cost-benefit perception of the farmers was studied on water conservation and management practices. Using ordinal regression analysis, the study revealed that the cost-benefit perception of the farmers, viz. willingness to pay an additional price for canal water and an increase in the availability of water due to canal lining, are the major factors responsible for undertaking conservation and sustainability measures. Further, socio-demographic variables such as age and education also influence water conservation behavior. The study recommends vital policy reforms and initiatives for efficient water use and management to resolve the grave concern of scarcity of usable water. The present study is unique in its suggestion of a comprehensive water conservation and management framework.
Afficher plus [+] Moins [-]Assessment of Deposited Red Clay Soil in Kirkuk City Using Remote Sensing Data and GIS Techniques
2024
V. F. Salahalden, M. A. Shareef and Q. A. M. Al Nuaimy
This study investigates the physical characteristics of red clay using the IDW approach and linear regression modeling in an area of 268.12 km2, focusing on Kirkuk, Bor, and Jambor structures. Through the analysis of 52 soil samples and the integration of laboratory data with IDW and regression results, several significant findings have emerged. The IDW method combined with linear regression proves to be a cost-effective and efficient approach for obtaining soil property data and generating accurate digital maps of red clay’s physical features. The Silt concentration exhibits a wide range, while the gravel content remains relatively low, indicating the predominance of silt in the soil composition. Analysis of Atterberg limits reveals the soil’s behavior and consistency in response to moisture, with the plasticity index generally falling within the low to medium range due to the considerable silt content in most soil samples. The linear regression model highlights positive correlations between the liquid limit, plastic limit, and plasticity index. Moderately positive relationships exist between the liquid limit and clay content, as well as a weak positive association between the liquid limit and specific gravity. Dry density, on the other hand, shows no significant correlation with other physical variables, suggesting its independence from the measured parameters. The plastic limit demonstrates a stronger relationship with the clay content compared to the liquid limit. Additionally, weak positive correlations are found between the liquid limit, plastic limit, and specific gravity and water content, indicating the influence of moisture on these parameters. Furthermore, gravel exhibits a moderate positive correlation with sand and silt concentrations, while a strong positive correlation is observed between sand and silt contents, underscoring their close association with the soil composition.
Afficher plus [+] Moins [-]Comparative Analysis of Various Seed Sludges for Biohydrogen Production from Alkaline Pretreated Rice Straw
2024
Pushpa Rani, Chhotu Ram, Arti Yadav, Deepak Kumar Yadav, Kiran Bishnoi and Narsi Ram Bishnoi
The present work studied the effects of alkali pretreatment on the cellulosic biomass of rice straw. The improvement in the cellulose content and reduction in the lignin and hemicellulose percentage was observed with alkali pretreatment. Fourier transformation infrared spectroscopy (FTIR) and Scanning electron microscopy (SEM) analysis confirm the modification in the surface structure of alkali rice straw. Further, the study investigated the potential of different types of seed sludge as inoculum sources for dark fermentative biohydrogen production. In comparison to other sludge samples (beverage industry, food industry, and sewage treatment plant sludge), the mixed culture of sewage treatment plant sludge had the highest cumulative volume of biohydrogen (90.52 mL), as well as the highest hydrogen production yield (0.75 moleH2/mole) with the substrate utilization of 86.72%. The results provide information on the best sludge source for enhancing biohydrogen production in the dark fermentation method.
Afficher plus [+] Moins [-]Invasive Aquatic Plants as Potential Sustainable Feedstocks for Biochar Production and as an Innovative Approach for Wastewater Treatment
2024
K. M. P. I. Jayathilake, P.M. Manage and F. S Idroos
Biochar (BC) is a well-established physical treatment method. The high-cost BC limits their use as adsorbents in wastewater. Thus, deriving BC from cheap and locally available waste materials is needed to develop a feasible waste removal technology. Nowadays, BC technology makes it possible to envision a new strategy to manage invasive plants by converting them into value-added products like BC. Hence, the present study was designed to evaluate the potential utilization of BC as an efficient filter medium made by invasive aquatic plants, Salvinia spp., and Eichhornia spp. A mass of 50 g of prepared activated and nonactivated BC was incorporated in a sand and gravel filter to treat rubber-manufactured wastewater. Wastewater was passed through the filter, and both raw and treated water samples were analyzed for pH, Total Suspended Solids (TSS), Biological Oxygen Demand (BOD5), Chemical Oxygen Demand (COD), Total Kjeldahl Nitrogen (TKN), Ammoniacal-Nitrogen (NH3-N), Electrical Conductivity (EC), Total Dissolved Solids (TDS), Total Phosphates (TP), Nitrate (NO3-N), turbidity and heavy metals (Zinc, Chromium). The control filter was developed only with sand and gravel, excluding BC. Fourier Transform-Infrared Spectroscopy (FT-IR) and Scanning electron microscopy (SEM) were used to analyze BC’s chemical and physical characteristics. A brine shrimp lethality assay was carried out for toxicological evaluation. OH stretching (3,550-3,200 cm−1), C=C aromatic stretching (1400-1660 cm−1), and Phenol-O-H bending (1,300-1,400 cm−1) were recorded in all BC samples that involved the adsorption mechanism. Observed images indicated differences in surface morphology of both activated and nonactivated BC were observed under SEM observation. The study concludes that the filter unit incorporated with activated Eichhornia spp. Gave the best treatment efficiency when compared to filter units incorporated with other activated and nonactivated BC. The toxicity assay revealed 100% mortality in the control setup and raw wastewater but only 60–70% in the nonactivated BC integrated filters. Activated BC-incorporated filters showed no mortalities. Hence, the study’s outcomes suggest a green approach using invasive aquatic plants for sustainable wastewater treatment.
Afficher plus [+] Moins [-]Application of Membrane Separation Technology in Electroplating Wastewater Treatment and Resource Recovery: A Review
2024
Le Zhang , Ying Chen , Huan Zhang, Yabin Jin, Zhe Shen and Gending Duan
The rapid development of industry has led to the generation of a large amount of electroplating wastewater. The direct discharge of untreated electroplating wastewater may lead to the formation of toxic metal-organic complexes, which is a challenging problem for human health and the living environment of organisms. Due to the high solubility of heavy metals in aquatic environments and their easy absorption by organisms, effective treatment of electroplating wastewater is of great significance. The ultimate goal of electroplating wastewater treatment should be to recover metals and water from electroplating wastewater. In indoor experiments, pilot tests, and industrial applications of electroplating wastewater treatment, membrane treatment technology commonly used in wastewater terminal treatment has attracted great attention. Membrane treatment technology seems to be the most promising method for removing heavy metals and organic pollutants from electroplating wastewater. This article reviews the membrane treatment technologies for electroplating wastewater, introduces the advantages and disadvantages of various membranes in the treatment of electroplating wastewater, the removal efficiency of pollutant types, and their comparison. The focus is on the treatment effects of nano-filtration membrane, ultra-filtration membrane, micro-filtration membrane, reverse osmosis membrane, ceramic membrane, biofilm, etc., on electroplating wastewater. Compared with a single treatment method, the combination of different processes shows higher efficiency in removing various pollutants.
Afficher plus [+] Moins [-]An Overview of Solid Waste Management Practices in Pune, Maharashtra, India
2024
Nilofar Saifi and Bandana Jha
The growing population and rapid urbanization are significant challenges for Indian cities. Pune City generates nearly 2,258 tonnes of waste per day. Pune’s informal waste sector has demonstrated remarkable efficiency, cost-effectiveness, and self-sustainability. Moreover, it contributes to favorable economic and social outcomes for the city. With the support of the self-help group SWaCH Seva Sahakari Sanstha Maryadit, Pune, the municipal solid waste management model has successfully achieved a remarkable 95 percent segregation rate. Implementing the Pune municipal solid waste management model showcases the active and efficient engagement of informal waste workers in the collection and resource utilization process. This underscores the possibility of favorable economic, social, and environmental results stemming from collaborations between municipalities and waste pickers. This paper looks at the role of SWaCH in line with Pune Municipal Corporation towards the present waste management system. Primarily reliant on labor, this model accomplishes recycling tasks at a notably lower cost compared to conventional mechanized and centralized waste management approaches. It can also accomplish high recycling levels and relatively considerable plastic waste segregation. Promoting the retrieval of valuable materials, especially plastics, for local and global recycling enterprises actively contributes to the advancement of a circular urban waste management approach. The objective of this research is to explore and provide a realistic understanding of Pune’s current status of waste generation, collection, transportation, and disposal. Apart from the SwaCH-PMC model, the paper also focuses on plastic waste recycling, the Red Dot Campaign towards sanitary waste, and household e-waste management in Pune.
Afficher plus [+] Moins [-]A Comprehensive Survey on Machine Learning and Deep Learning Techniques for Crop Disease Prediction in Smart Agriculture
2024
Chatla Subbarayudu and Mohan Kubendiran
Diseases caused by bacteria, fungi, and viruses are a problem for many crops. Farmers have challenges when trying to evaluate their crops daily by manual inspection across all forms of agriculture. Also, it is difficult to assess the crops since they are affected by various environmental factors and predators. These challenges can be addressed by employing crop disease detection approaches using artificial intelligence-based machine learning and deep learning techniques. This paper provides a comprehensive survey of various techniques utilized for crop disease prediction based on machine learning and deep learning approaches. This literature review summarises the contributions of a wide range of research works to the field of crop disease prediction, highlighting their commonalities and differences, parameters, and performance indicators. Further, to evaluate, a case study has been presented on how the paradigm shift will lead us to the design of an efficient learning model for crop disease prediction. It also identifies the gaps in knowledge that are supposed to be addressed to forge a path forward in research. From the survey conducted, it is apparent that the deep learning technique shows high efficiency over the machine learning approaches, thereby preventing crop loss.
Afficher plus [+] Moins [-]Circular Economy as an Important Lever to Reduce Greenhouse Gas Emissions: Case of an Electricity Distribution Company in Morocco
2024
Salma El Majaty, Abdellatif Touzani and Youssef Kasseh
This article discusses the major challenges related to greenhouse gas (GHG) emissions in the electricity sector and their impact on global climate change. The electricity sector is responsible for about a quarter of total global GHG emissions. To address these challenges, Life Cycle Assessment (LCA) is used to measure the environmental impact of different energy sources and electricity generation and distribution processes. The circular economy is presented as a promising approach to reducing the carbon footprint of the electricity sector. By optimizing the use and value of materials throughout their life cycle, this approach contributes to waste minimization and resource efficiency. Morocco is committed to reducing its GHG emissions and has adopted policies and regulatory frameworks to combat climate change. This study aims to calculate the climate change impacts of electricity distribution phases by applying a life-cycle approach to the case of an electricity distribution company in Morocco. This assessment makes it possible to identify significant contributors from each area. In the context of this company, it is a question of demonstrating how the application of the principles of the circular economy concepts contributes to the reduction of greenhouse gas emissions, in particular, that of scope 3. This study may be useful for other similar companies.
Afficher plus [+] Moins [-]