Affiner votre recherche
Résultats 471-480 de 736
Control of Algal Scum Using Top-Down Biomanipulation Approaches and Ecosystem Health Assessments for Efficient Reservoir Management
2010
An, Kwang-Guk | Lee, Jae-Yon | Kumar, Hema K. | Lee, Sang-Jae | Hwang, Soon-Jin | Kim, Baik-Ho | Park, Young-Seuk | Shin, Kyung-Hoon | Park, Sangkyu | Um, Han-Yong
The objectives of this study were algal control and health assessments in a temperate eutrophic reservoir. Laboratory and mesocosm-scale in situ top-down biomanipulation experiments using planktivorous fishes and filter-feeding macroinvertebrates were conducted along with identification of the limiting nutrient using nutrient enrichment bioassays (NEBs), and ecosystem health evaluation based on the modified index of biological integrity model (Reservoir Ecosystem Health Assessment; REHA). Nutrients and N/P ratio analyses during 5 years revealed that the reservoir was in a eutrophic-hypertrophic state and that the key limiting nutrients, based on the NEBs, varied among seasons. Reservoir trophic guilds indicated declines in sensitive and endemic fish species and dominance of tolerant omnivores. Model values from multimetric REHAs averaged 25.8, indicating that the ecological health was in “fair to poor” condition. Overall microcosm biomanipulation tests suggested that macroinvertebrates, specifically Palaemon paucidens and Caridina denticulata, were effective candidates for phytoplankton control, compared to fishes. In situ mesocosm experiments revealed the highest removal rates with bluegreen algae and a phytoplankton size fraction of 2-19 μm (R e > 90%, Mann-Whitney U = 64.5-74.0, p < 0.01), the dominant fractions in the reservoir. Our biomanipulation technique may provide a key tool for efficient management and restoration of eutrophied reservoirs.
Afficher plus [+] Moins [-]Enhancement of Biological Nitrogen Removal from Wastewater by Low-Intensity Ultrasound
2010
Xie, Beizhen | Liu, Hong
This paper investigated the influence of low-intensity ultrasound in biological nitrification and denitrification. The results showed that the nitrification activity of activated sludge could not be promoted significantly by ultrasound in 5-40 min with intensities ranging from 0.1 to 1.2 W cm⁻². It suggested the fact that nitrifying bacteria were insensitive to ultrasound, possibly related with their specific structures of cell membrane and ways of metabolism. Whereas, biological denitrification was enhanced quite remarkably by ultrasound and the optimal results were achieved at the ultrasonic intensity of 0.2 W cm⁻² and the irradiation time of 10 min. Compared with the control without ultrasonic irradiation, it took 5 h for the enhancement of denitrification rates induced by the optimum ultrasound to reach its peak level (16%). Therefore, ultrasound with intensity of 0.2 W cm⁻² could be employed in the biological denitrification system for 10 min every 5 h to obtain the optimal effect theoretically.
Afficher plus [+] Moins [-]Size Distribution of Wet Weather and Dry Weather Particulate Matter Entrained in Combined Flows from an Urbanizing Sewershed
2010
Piro, P. | Carbone, M. | Garofalo, G. | Sansalone, J.
Urban drainage transports a complex and heterogeneous mixture of aqueous-phase chemicals and also solid-phase particulate matter (PM). In this study, event-scale particle size distribution (PSD) of wet and dry weather flows are measured, modeled, and compared. The flows are generated from a complex urbanizing sewershed (Liguori catchment) in Cosenza, Italy. Results indicate PSDs are heterodisperse, ranging from colloidal to sand-size PM. On an event scale, dry weather PSDs are coarser than wet weather flows, yet within each flow class results indicate flow-limited behavior and only nominal variability during and between events. PSDs from each event and flow category are modeled with a cumulative gamma distribution. Results produced nonparametric distributions of shape (γ) and scaling (α) parameters as well as a d ₅₀ index. Wet weather flows generated statistically significantly higher distributions of γ and α and statistically significantly lower d ₅₀. Nonparametric parameter distributions illustrate greater, yet still nominal variability for wet weather flows.
Afficher plus [+] Moins [-]Trace Elements in Plankton, Benthic Organisms, and Forage Fish of Lake Moreno, Northern Patagonia, Argentina
2010
Arribére, Maria A. | Campbell, Linda M. | Rizzo, Andrea P. | Arcagni, Marina | Revenga Sánchez, Jorge | Ribeiro Guevara, Sergio
The Northern Patagonian Andean range shared by Chile and Argentina has numerous glacial oligotrophic lakes protected in a series of National Parks. Recent baseline surveys indicated that concentrations in muscle and liver tissues from various fish species from across Nahuel Huapi and Los Alerces National Parks in Argentina were comparable or higher than similar fish species from other parts of the world. As a result, Lake Moreno, in Nahuel Huapi National Park, was chosen to investigate multiple element sinks, trends, and transfer in a representative Patagonia aquatic food web. The metals and metalloids Ag, As, Ba, Br, Cs, Co, Cr, Fe, Hg, K, Na, Rb, Se, and Zn were analyzed in three size plankton fractions, submerged macrophytes, biofilm, insect larvae, amphipods, decapods, gastropods (snails), annelids (earthworms), and forage fish. Except for nanoplankton (10-53 μm; small-celled algae, rotifers) and microplankton (53-200 μm; larger algae, ciliates, zooplankton nauplii), which share elemental compositional similarities, each taxon category had its own distinctive compositional pattern, revealed by principal component analysis. Nano- and microplankton tend to be relatively elevated in some metals, including As, Co, Cr, Fe, Hg, Zn, and Rb, followed by biofilm. Shredder-scrapper Trichoptera (caddisflies) have higher concentration of most of the studied elements than other insect larvae taxa, especially carnivorous Odonata (Anisoptera, dragonflies), which were associated with lower elemental contents. Those trends point to an overall tendency for biodiminishing element concentrations with trophic level in the benthos of Lake Moreno.
Afficher plus [+] Moins [-]Evaluation of Biochar Effects on Nitrogen Retention and Leaching in Multi-Layered Soil Columns
2010
Ding, Ying | Liu, Yu-Xue | Wu, Wei-Xiang | Shi, De-Zhi | Yang, Min | Zhong, Zhe-Ke
Biochar can play a key role in nutrient cycling, potentially affecting nitrogen retention when applied to soils. In this project, laboratory experiments were conducted to investigate the adsorption properties of bamboo charcoal (BC) and the influence of BC on nitrogen retention at different soil depths using multi-layered soil columns. Results showed that BC could adsorb ammonium ion predominantly by cation exchange. Ammonium nitrogen (NH₄ ⁺-N) concentrations in the leachate of the soil columns showed significant differences at different depths after ammonium chloride application to the columns depending on whether BC had been added. Addition of 0.5% BC to the surface soil layer retarded the downward transport of NH₄ ⁺-N in the 70-day experiment, as indicated by measurements made during the first 7 days at 10 cm, and later, in the experimental period at 20 cm. In addition, application of BC reduced overall cumulative losses of NH₄ ⁺-N via leaching at 20 cm by 15.2%. Data appeared to suggest that BC could be used as a potential nutrient-retaining additive in order to increase the utilization efficiency of chemical fertilizers. Nonetheless, the effect of BC addition on controlling soil nitrogen losses through leaching needs to be further assessed before large-scale applications to agricultural fields are implemented.
Afficher plus [+] Moins [-]Assessment of the Pollution from Tannery Effluents upon Waters and Soils in and Around Kula Vicinity, Turkey
2010
Tarcan, Gültekin | Akıncı, Görkem | Danışman, M Ali
More than 50 tanneries are operated in Kula, Turkey which is located on highly permeable geological units. The untreated effluents from the tanneries discharged onto the ground surface may cause pollution in surface waters, in groundwater, and in soil. Since the water resources of the region are used for drinking, agricultural, and industrial purposes, the quality assessment of groundwaters and surface waters is completed in the content of this study. Additionally, the surface soil samples are analyzed for their heavy metal content to describe the size of the pollution. The results obtained from the analysis of the water samples show that the concentrations are mostly within drinking water limits. But, concentrations are expected to increase in the next years as no effective effluent collection and treatment is present in the tanneries. Although the concentrations of K, SO₄, Mg, Na, and Cl exceed the permissible limits for drinking water in some cases, they may not directly be caused by tannery activities. Nevertheless, they should be assessed as an indicator of the beginning of groundwater pollution. Also, soil samples collected near the tannery district are extremely polluted. This paper discusses the assessment of the geochemical dispersals of Cr and other pollutants derived from the tannery activities within soil and water in Kula.
Afficher plus [+] Moins [-]Role of Thiol Metabolism in Arsenic Detoxification in Hydrilla verticillata (L.f.) Royle
2010
Srivastava, Sudhakar | Miśrā, Sīmā | Dwivedi, Sanjay | Tripathi, R. D.
Arsenic (As) contamination of the environment has emerged as a concerning issue recently for which phytoremediation has been suggested as a viable solution. Hydrilla verticillata (L.f.) Royle is a widely distributed rapidly growing aquatic weed possessing significant potential to accumulate As and is thus a potential candidate for the purpose of As phytoremediation. In the present study, an investigation of thiol metabolism was conducted in H. verticillata, which revealed differential effects upon exposure to arsenite [As(III)] and arsenate [As(V)]. The accumulation of arsenic was found to be higher upon exposure to As(III) than to As(V). Besides, As(III) was found to induce the activities of enzymes, such as cysteine synthase and γ-glutamylcysteine synthetase and the amounts of cysteine and glutathione (GSH) to higher levels than that observed with As(V). The activity of glutathione-S-transferase was, however, stimulated to a higher level upon exposure to As(V) than As(III). The activity of arsenate reductase was found to increase upon As(V) exposure at all concentrations and durations. In addition, a significant stimulation in the activity of phytochelatin synthase was noticed in vitro with an increase in As/GSH concentration and time of incubation. Arsenic detoxification in H. verticillata thus appeared to involve an induction of thiol synthesis and consumption in a coordinated manner, though differentially upon exposure to As(III) and As(V). The information gained through this study would help in better designing of the pilot experiment at the field level depending on the chemical composition of the contaminated water.
Afficher plus [+] Moins [-]A Comprehensive Study of Deep Catalytic Oxidation of Benzene, Toluene, Ethyl Acetate, and their Mixtures over Pd/ZSM-5 Catalyst: Mutual Effects and Kinetics
2010
He, Chi | Li, Peng | Cheng, Jie | Hao, Zheng-Ping | Xu, Zhi-Ping
Reaction behaviors and kinetics of catalytic oxidation of benzene, toluene, and ethyl acetate with feed concentrations in the range of 700-5,000 ppm over Pd/ZSM-5 catalyst were investigated. Results for single components show that ethyl acetate (T ₅₀ = 190-200°C) is more easily oxidized than benzene (T ₅₀ = 215-225°C) and toluene (T ₅₀ = 225-235°C). The conversion of ethyl acetate was increased with the increase of its feeding concentration, while the opposite behaviors were observed for benzene and toluene as their conversion rates were decreased with the increase of the inlet concentration. Different behaviors were observed in catalytic oxidation of volatile organic compound (VOC) multi-components, the presence of benzene or toluene inhibits the conversion of ethyl acetate, and the aromatic hydrocarbons inhibit each other in all cases. Ethyl acetate possesses obvious inhibitory effect on benzene oxidation, while it is interesting to note that ethyl acetate has a promotion effect on toluene conversion. The kinetic data were fitted by the Power-law and Mars-van Krevelen kinetic models. The fitting result shows that the Power-law model is more suitable for predicting the conversion of benzene than the other VOCs, and the Mars-van Krevelen model can accurately express the reaction rate of all investigated VOCs.
Afficher plus [+] Moins [-]Dissolved Organic Nitrogen Concentrations and Ratios of Dissolved Organic Carbon to Dissolved Organic Nitrogen in Throughfall and Soil Waters in Norway Spruce and Scots Pine Forest Stands Throughout Norway
2010
Wu, Yijie | Clarke, Nicholas | Mulder, Jan
Dissolved organic nitrogen (DON) plays an important ecological role in forest ecosystems, and its concentration is related to that of dissolved organic carbon (DOC). We investigated DON concentrations and ratios of DOC to DON in throughfall and soil waters in 16 Norway spruce and two Scots pine forest stands sampled at weekly intervals between 1996 and 2006. The stands are all included in the ICP Forests Level II monitoring program and are located throughout Norway. DON concentrations were significantly and positively related to DOC concentrations in throughfall (r ² = 0.72, p < 0.0001) and soil water at 5, 15, and 40 cm (r ² = 0.86, 0.32, and 0.84 and p < 0.0001, 0.04, and <0.0001, respectively). At most sites, the annual median DOC/DON ratio in throughfall ranged from 20.3 to 55.5, which is lower than values in soil water, which ranged from 24.5 to 81.3, gradually decreasing with soil depth. DON concentrations varied seasonally in throughfall at many plots and in soil water at 5-cm depth at one plot only, with higher values in the growing season, but there was no noticeable seasonality at greater depth. The ratios of DOC/DON in soil water were significantly positively related to the C/N ratio in soil at the same depth. Above-ground litter input was the main factor having a significant, negative relationship to DOC/DON in soil water at all depths studied. This might reflect the effect of site conditions on both DOC/DON ratios and litter quantity.
Afficher plus [+] Moins [-]Treatment of Waters Containing the Thiocarbamate Herbicide Molinate through an Adsorption/Bio-Regeneration System using a Low-Cost Adsorbent
2010
Carvalho, Débora | Mendes, Adélio | Magalhães, Fernão D. | Nunes, Olga C.
The feasibility of using recycled granular tire rubber (GTR) to remove molinate from contaminated water bodies was evaluated in this study. Adsorption equilibrium data was well described by a linear isotherm, and the adsorption was completely reversible. Breakthrough curves showed column efficiencies of approximately 40%, based on total capacity, and complete bed regeneration was achieved using clean water. The effluent from the regeneration step was successfully decontaminated using a defined bacterial mixed culture, capable of molinate mineralization. It was shown that this treated water can be used for regenerating a subsequently saturated bed. The GTR adsorbent showed two important features: complete reversibility towards molinate adsorption and stability along successive adsorption/bio-regeneration cycles. Common adsorbents, such as activated carbons and resins, loose performance very quickly under the same conditions, due to irreversible adsorption.
Afficher plus [+] Moins [-]