Affiner votre recherche
Résultats 471-480 de 4,896
Retention of microplastics in sediments of urban and highway stormwater retention ponds
2019
Liu, Fan | Vianello, Alvise | Vollertsen, Jes
Urban and highway surfaces discharge polluted runoff during storm events. To mitigate environmental risks, stormwater retention ponds are commonly constructed to treat the runoff water. This study is the first to quantify the retention of microplastics in the sediments of such ponds. It applied state-of-art FTIR-methods to analyse the composition, size, shape, and mass of microplastics in the range 10–2000 μm. Seven ponds serving four land uses were investigated, and the results are related to catchment characteristics, sediment organic matter content, and hydraulic loading. We have not found a correlation between the microplastics abundance, polymer composition, size distribution and the land use in the catchment, as well as the sediment organic matter content. Both the highest (127,986 items kg⁻¹; 28,732 μg kg⁻¹) and the lowest (1511 items kg⁻¹; 115 μg kg⁻¹) accumulation of microplastics were found in the sediments of ponds serving industrial areas. There was, however, a correlation to the hydraulic loading of the ponds, where the sediments of the highest-loaded ponds held the most microplastics. This study shows that sediments in stormwater retention ponds can trap some of the microplastics and prevent them from being transported downstream. These systems need to be considered when assessing the fate of microplastics from urban and highway areas.
Afficher plus [+] Moins [-]Icariin attenuate microcystin-LR-induced gap junction injury in Sertoli cells through suppression of Akt pathways
2019
Zhou, Yuan | Chen, Yu | Hu, Xueqin | Guo, Jun | Shi, Hao | Yu, Guang | Tang, Zongxiang
Microcystin-leucine-arginine (MC-LR) can cause male reproductive disorder. However, the underlying mechanism are not yet entirely elucidated. In this study, we aimed to investigated the effects of MC-LR on the integrity of blood-testis barrier (BTB) and the related molecular mechanisms. Both in vivo and in vitro experiments revealed that MC-LR caused disruption of BTB and gap junctions between Sertoli cells respectively, which was paralleled by the alteration of connexin43 (Cx43). Our data demonstrated that MC-LR decreased gap junction intercellular communication (GJIC) and impaired Cx43 expression by activating the phosphatidylinositol 3-kinase/Akt cascades. In addition, a possible protective effect of Icariin (ICA), a flavonoid isolated from Chinese medicinal herb, against MC-LR toxicity was investigated. The ICA prevented the degradation of GJIC and impairment of Cx43 induced by MC-LR via suppressing the Akt pathway. Together, our results confirmed that the expression of Cx43 induced by MC-LR was regulated in vivo and in vitro, which was involved in the destruction of BTB. Additionally, ICA seems to be able to mitigate the MC-LR toxic effects.
Afficher plus [+] Moins [-]Activation of NF-κB pathways mediating the inflammation and pulmonary diseases associated with atmospheric methylamine exposure
2019
Li, Guiying | LIao, Yi | Hu, Junjie | Lu, Lirong | Zhang, Yanan | Li, Bing | An, Taicheng
The effects of methylamine on human health have been debated for several years, but the exact adverse outcomes and definite signaling cascades have not been elucidated yet. Herein, a NF-κB signal pathway, a positive regulator of inflammation was identified as the main pathway of methylamine exposure induced adverse effects in bronchial airway cells (16HBE) for the first time. The results indicated that methylamine could stimulate the overproduction of reactive oxygen species (ROS) in cytoplasm and mitochondria of 16HBE cells. Moreover, ROS accelerate the translocation and phosphorylation of NF-κB in nucleic and promote the expression of inflammatory, such as IL-8 and IL-6. As a result, methylamine was found to be increased ROS-mediated NF-κB activation in cells, leading to the production of inflammatory cytokine. Furthermore, the results also showed that methylamine could affect the expression of cytokines related genes, p53, STAT3, Bcl2, c-myc, Cyclin D, Hes1, Mcl-1, TGF-β2. The breakdown of those cell proliferation and apoptosis related genes were leading to a common toxic mechanism of cell death. In summary, our work uncovers a mechanism by which methylamine can induce the formation of inflammation response and demonstrates potential inflammation and carcinogenesis in human airway cell upon the methylamine inhaled.
Afficher plus [+] Moins [-]Remediation performance and mechanism of hexavalent chromium in alkaline soil using multi-layer loaded nano-zero-valent iron
2019
Hou, Siyu | Wu, Bin | Peng, Dinghua | Wang, Ziru | Wang, Yiyang | Xu, Heng
Remediation of soil chromium (Cr) pollution is becoming more and more urgent. In this study, a multi-loaded nano-zero-valent iron (nZVI) material (CNH) was prepared by carboxymethyl cellulose (CMC) and humic acid (HA) as dispersant and support agent, respectively, and the remediation effect of CNH, HA and CN (CNH without HA) for Cr contaminated soil was investigated within 90 d cycle. After 7 d treatment of CNH, the HOAc-extractable Cr decreased significantly. After the 90 d remediation, the HOAc-extractable Cr decreased most in the treatment of 3% CNH, about 74.48% lower than control. All treatments eventually caused different decline of soil pH, with a range of 0.12–0.54, in which the CNH treatment group had the least depression. HA loading significantly weakened the toxicity of nZVI, resulting in the higher soil microbial quantity and enzyme activities compared with CN. Additionally, the improvement of soil microecology by CNH and HA was positively correlated with the ratio of application, while CN was negatively correlated (except FDA enzyme activity) with these indexes. These results emphasized the potential of the synthesized CNH as a promising material to remediate Cr contaminated soil. Furthermore, details of possible mechanistic insight into the Cr remediation were carefully discussed.
Afficher plus [+] Moins [-]Cr(VI) removal from soils and groundwater using an integrated adsorption and microbial fuel cell (A-MFC) technology
2019
Zhang, Tingting | Hu, Liyang | Zhang, Minglu | Jiang, Mengyun | Fiedler, H. (Heidelore) | Bai, Wenrong | Wang, Xiaohui | Zhang, Dayi | Li, Zetang
Remediation of hexavalent chromium [Cr(VI)] has been widely studied for its high mobility and toxicity. As Cr(VI) migrates in natural environment, both soils and groundwater are contaminated simultaneously. In the present study, a novel reactor combining adsorption and microbial fuel cell (A-MFC) using Platanus acerifolia leaves was developed for removing Cr(VI) from groundwater and soils. When initial Cr(VI) concentration was 50 mg/L, the adsorption efficiency of A-MFC achieved 98% after 16 h. Afterwards, the leaves were used for fabricating an MFC-integrated leaching reactor. The A-MFC significantly improved the overall Cr(VI) removal efficiency through leaching and 40% of Cr(VI) in the soil column was removed. The electrical voltage and current of A-MFC reactor achieved averagely 343 mV and 141 μA to maintain the system operation without extra energy supply. This novel A-MFC reactor is an environmentally friendly technology which achieved efficient Cr(VI) removal from groundwater and soils using natural materials, proving the concept that integrated self-remediation of Cr(VI) in contaminated soil and groundwater with natural material and energy.
Afficher plus [+] Moins [-]Genetic, epigenetic and microbiome characterisation of an earthworm species (Octolasion lacteum) along a radiation exposure gradient at Chernobyl
2019
Newbold, Lindsay K. | Robinson, Alex | Rasnaca, I. | Lahive, Elma | Soon, Gweon H. | Lapied, Emmanuel | Oughton, Deborah | Gashchak, Sergey | Beresford, Nicholas A. | Spurgeon, David J.
The effects of exposure to different levels of ionising radiation were assessed on the genetic, epigenetic and microbiome characteristics of the “hologenome” of earthworms collected at sites within the Chernobyl exclusion zone (CEZ). The earthworms Aporrectodea caliginosa (Savigny, 1826) and Octolasion lacteum (Örley, 1881) were the two species that were most frequently found at visited sites, however, only O. lacteum was present at sufficient number across different exposure levels to enable comparative hologenome analysis. The identification of morphotype O. lacteum as a probable single clade was established using a combination of mitochondrial (cytochrome oxidase I) and nuclear genome (Amplified Fragment Length Polymorphism (AFLP) using MspI loci). No clear site associated differences in population genetic structure was found between populations using the AFLP marker loci. Further, no relationship between ionising radiation exposure levels and the percentage of methylated loci or pattern of distribution of DNA methylation marks was found. Microbiome structure was clearly site dependent, with gut microbiome community structure and diversity being systematically associated with calculated site-specific earthworm dose rates. There was, however, also co-correlation between earthworm dose rates and other soil properties, notably soil pH; a property known to affect soil bacterial community structure. Such co-correlation means that it is not possible to attribute microbiome changes unequivocally to radionuclide exposure. A better understanding of the relationship between radionuclide exposure soil properties and their interactions on bacterial microbiome community response is, therefore, needed to establish whether these the observed microbiome changes are attributed directly to radiation exposure, other soil properties or to an interaction between multiple variables at sites within the CEZ.
Afficher plus [+] Moins [-]Identification of long non-coding RNAs in response to nanopolystyrene in Caenorhabditis elegans after long-term and low-dose exposure
2019
Qu, Man | Zhao, Yunli | Zhao, Yingyue | Rui, Qi | Kong, Yan | Wang, Dayong
The potential adverse effects of nanoplastics, such as nanopolystyrene, have received the great attention recently. However, the molecular response of organisms to nanoplastics is still largely unknown. In this study, we employed Caenorhabditis elegans as an animal model to investigate the long non-coding RNAs (lncRNAs) in response to long-term exposure to low-dose nanopolystyrene (100 nm). Based on Hiseq 2000 sequencing and qRT-PCR confirmation, we identified 36 lncRNAs (21 down-regulated lncRNAs and 15 up-regulated lncRNAs) in response to nanopolystyrene (1 μg/L). Using intestinal reactive oxygen species (ROS) production and locomotion behavior as endpoints, we found that RNAi knockdown of linc-2, linc-9, or linc-61 induced a susceptibility to nanopolystyrene toxicity, and RNAi knockdown of linc-18 or linc-50 induced a resistance to nanopolystyrene toxicity. Meanwhile, nanopolystyrene (1 μg/L) increased expressions of linc-2, linc-9, linc-18, and linc-61 and decreased linc-50 expression, suggesting that these 5 lncRNAs mediated two different responses to nanopolystyrene exposure. Bioinformatical analysis implied that these 5 lncRNAs were associated with multiple biological processes and signaling pathways. Our results demonstrated the crucial roles of lncRNAs in response to long-term exposure to low-dose nanopolystyrene in organisms.
Afficher plus [+] Moins [-]The intersex phenomenon in Sarotherodon melanotheron from Lagos lagoon (Nigeria): Occurrence and severity in relation to contaminants burden in sediment
2019
Adeogun, Aina O. | Ibor, Oju R. | Chukwuka, Azubuike V. | Regoli, Francesco | Arukwe, Augustine
The correlation between endocrine active contaminants in the environment and alterations in reproductive development of Sarotherodon melanotheron from Lagos lagoon has been investigated. Sediment and a total of 155 fish (74 males and 81 females) were collected between November 2014–March 2015 from selected contaminated sites (Ikorodu, Oworonshoki, Makoko and Idumota) and a putative control site (Igbore) along the lagoon. Sediment contaminant analysis revealed, significantly higher concentration of lindane, dieldrin, 4-iso-nonylphenol, 4-t-octylphenol and monobutyltin cation at the contaminated sites. Examination of gross morphological and histological changes of fish gonads showed a 27.4% prevalence of intersex in the sampled fish, of which 78% were males (testes-ova) and 22% were females (ovo-testis). Quantitative PCR (qPCR) of liver transcripts revealed the presence of vitellogenin (vtg) levels in male fish from contaminated sites. Zona radiata proteins (zrp) mRNA levels were significantly higher in females, compared to male fish. In general, significantly lower vtg and zrp transcripts levels were recorded at Igbore (control site), compared with contaminated sites. Principal component analysis (PCA) showed site and sex relationship in biological responses and contaminants, including trace metals, demonstrating that measured endocrine responses in fish were associated with contaminant burden in sediment. In addition, positive relationships were observed in male fish from Idumota, Oworonshoki and Ikorodu with vtg and dieldrin/4-iso-nonyphenol, with higher levels in male fish, compared to females. Further, contaminants from the Makoko, Oworonshoki and Ikorodu sites were positively associated with higher GSI and zrp in females. More importantly, the severity of intersex and changes in vtg transcripts imply a progressive feminization of male fish with concomitant alteration in the reproductive health of fish inhabiting the Lagos lagoon.
Afficher plus [+] Moins [-]Sex differences in the association between perfluoroalkyl acids and liver function in US adolescents: Analyses of NHANES 2013–2016
2019
Attanasio, Roberta
Perfluoroalkyl acids (PFAAs) are persistent in the environment, highly bio-accumulative in the body, and likely hepatotoxic in humans. There is evidence of sex-specific physiological responses to PFAA exposure. However, epidemiological studies seldom stratify the analyses by sex. Given the high prevalence of liver disease in general population adolescents, this study was designed to determine whether or not there is association between exposure to PFAAs and biomarkers of liver function in adolescent participants of the 2013–2016 National Health and Nutrition Examination Survey, and whether or not such association is sex-specific. Multivariate linear regressions were performed to examine the association between single PFAAs [perfluorooctane sulfonic acid (PFOS); linear form of perfluorooctanoic acid (PFOA); perfluorohexane sulfonic acid (PFHxS); perfluorononanoic acid (PFNA)], and biomarkers of liver function — gamma glutamyltransferase (GGT), aspartate aminotransferase (AST), alanine aminotransferase (ALT), and total bilirubin. Multivariate logistic regressions were performed to estimate adjusted odd ratios (aOR) of elevated ALT, AST and GGT. The study results show that, in females, there was a positive association of the highest PFOA quartile with increased ALT, AST and GGT, and the highest PFNA quartile with increased ALT and AST. Conversely, in male adolescents there was an association of the highest linear PFOA quartile with decreased ALT, and the highest PFNA quartile with ALT and AST. Females had higher odds of clinically-defined elevated ALT with increased PFOA (aOR = 1.79; 95% CI: 1.05, 3.04) or PFNA (aOR = 2.28; 95% CI: 1.08, 2.28), whereas males had decreased odds of clinically-defined elevated ALT with increased n-PFOA (aOR = 0.43; 95% CI: 0.20, 0.93) or PFNA (aOR = 0.5; 95% CI: 0.28, 0.89). In conclusion, there were sex differences in the association between serum PFAA levels and biomarkers of liver function. These results may provide support for analyzing sex-based adverse effects of PFAAs.
Afficher plus [+] Moins [-]Accumulation and spatial distribution of copper and nutrients in willow as affected by soil flooding: A synchrotron-based X-ray fluorescence study
2019
Cao, Yini | Ma, Chuanxin | Zhang, Jianfeng | Wang, Shufeng | White, Jason C. | Chen, Guangcai | Xing, Baoshan
Copper (Cu) induced phytotoxicity has become a serious environmental problem as a consequence of significant metal release through anthropogenic activity. Understanding the spatial distribution of Cu in plants such as willow is essential to elucidate the mechanisms of metal accumulation and transport in woody plants, particularly as affected by variable environment conditions such as soil flooding. Using synchrotron-based X-ray fluorescence (μ-XRF) techniques, the spatial distribution of Cu and other nutrient elements were investigated in roots and stems of Salix (S.) integra exposed to 450 mg kg⁻¹ Cu under non-flooded (NF)/flooding (F) conditions for 90 d. S. integra grown in the F condition exhibited significant higher tolerance index (TI, determined by the ratio of total biomass in Cu treatments to control) (p < 0.05) than that in the NF condition, indicating soil flooding alleviated Cu toxicity to willow plants. The μ-XRF revealed that Cu was preferentially located in the root cap and meristematic zone of the root tips. Under the NF condition, the Cu intensity in the root epidermis was more highly concentrated than that of the F condition, suggesting the soil flooding significantly inhibited Cu uptake by S. integra. The pattern of the Cu spatial distribution in the S. integra stem indicated that the F condition severely reduced Cu transport via the xylem vessels as a consequence of decreasing the transpiration rate of leaves. To our knowledge, this is the first study to report the in vivo Cu distribution in S. integra in a scenario of co-exposure to the Cu and the soil flooding over a long period. The finding that Cu uptake varies significantly with flooding condition is relevant to the development of strategies for plants to detoxify the metals and to maintain the nutrient homeostasis.
Afficher plus [+] Moins [-]