Affiner votre recherche
Résultats 471-480 de 502
Integrated Riverside Development Along Adyar River, Chennai
2024
S. Indhu Kirthika and R. Shanmuga Priyan
Integrated Riverside Development (IRD) is a planning approach that aims to achieve sustainable development of urban areas located along riverbanks. To implement this IRD with controlled regulations, the study is focused on developing a comprehensive riverside development and river zoning regulatory framework that integrates all five main elements, with particular emphasis on economic, ecological, and social factors, in order to reduce encroachment and pollution in the study area. The objectives of the study include analyzing the current land use, recreational parks, encroachments, pollution levels, sewage disposal patterns, and solid waste dumping zones in the study area, as well as studying the socio-economic and eco-environmental aspects of the area. Additionally, identifying and analyzing the major threats to the river and developing a river zoning regulatory framework using the land use matrix technique is also included in the study objectives. The study area (Adyar River) was chosen based on social, ecological, and economic factors, and data was collected through surveys and from government offices. Using the land use matrix method, proposals for riverside development were made, and the zones were classified into development-prohibited, development-restricted, and development-optimized zones. The zones were classified based on the calculated values of Eco sensitivity for each of the three zones. Proposals were then given based on these classified zones, and the levels of development potential were determined. The proposed zoning regulatory framework is expected to have a significant impact in reducing further encroachments and improving connectivity between the city and the river. By considering socio-economic, ecological, and environmental aspects, the study recommends appropriate zoning regulations for riverfront developments that promote sustainable growth.
Afficher plus [+] Moins [-]The Suitability of Fe3O4/Graphene Oxide Nanocomposite for Adsorptive Removal of Methylene Blue and Congo Red
2024
Viet Cao, Phuong Anh Cao, Duy Linh Han, Minh Tuan Ngo, Truong Xuan Vuong and Hung Nguyen Manh
In this study, Fe3O4/GO nanocomposite was synthesized by hydrothermal method and tested for its efficiency in removing methylene blue (MB) and congo red (CR) from water. The synthesized nanocomposite was characterized using Fourier-transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), and scanning electron microscopy (SEM). The optimal values for MB and CR removal were determined to be pH 6.0, an adsorbent weight of 50.0 mg, and a contact time of 10 min. The adsorption isotherms of the contaminants on the nanocomposite were analyzed using the Freundlich model, indicating a heterogeneous distribution of active sites on the adsorbent surface. The highest adsorption capacity of MB and CR is 135.1 and 285.7 mg.g-1, respectively. Moreover, Fe3O4/GO nanocomposite recycled five cycles with proper adsorption capacity. Overall, the Fe3O4/GO nanocomposite holds great promise for efficient and sustainable water treatment, providing safe and clean water globally.
Afficher plus [+] Moins [-]Competitive Adsorption of Cd(II) and Zn(II) on Biochar, Loess, and Biochar-loess Mixture
2024
Y. W. Li, B. W. Zhao, L. Wang, Y. Q. Li, T. Wang, Y. H. Jia and M. L. Zhao
Combined heavy metal contamination in soil is a common phenomenon. Biochar amendment into the soil is considered to be an alternative for immobilization remediation of soil contaminated with heavy metals due to its adsorption and alkalization. However, much attention has been paid to the adsorption and immobilization of single heavy metals by biochar. In this paper, the competitive adsorption of Cd(II) and Zn(II) on biochar derived from cotton straw and pig manure at 500℃ (BCS500 and BPM500), loess and biochar-loess mixtures were investigated using the batch equilibrium method. The results showed that the adsorption capacities of biochars, loess, and biochar-loess mixtures to Cd(II) and Zn(II) in the mixed Cd-Zn systems increased with the increase of initial metal concentrations of Cd(II) and Zn(II). The adsorptive capacities of BCS500 and BPM500 to Cd(II) in mixed Cd-Zn system were 33% and 35% less than those in the single Cd(II)systems, while the adsorptive capacities to Zn(II) were 62% and 56% less than those in the single Zn(II) systems. The adsorptive capacities of loess to Cd(II) and Zn(II) in mixed Cd-Zn systems were 29% and 55% less than those in the single metal systems. The adsorptive capacities of loess-BCS500 (LBCS) and loess-BPM500 (LBPM) to Cd(II) in mixed Cd-Zn system were 40% and 38% less than those in the single Cd(II) systems, while the adsorptive capacities to Zn(II) were 63% and 60% less than those in the single Zn(II)systems. Moreover, the competitive adsorptive capacity of Cd(II) is greater than that of Zn(II). It can be seen that when heavy metal pollution with similar nature of multiple elements exists in soil, the amount of adsorbent should be increased to resist the possible weakened adsorption caused by competitive adsorption in order to guarantee an effective absorption treatment.
Afficher plus [+] Moins [-]Effectiveness of Cadmium on Biochemical Shift of Pea Plant Treated with Mycorrhiza and Putrescine
2024
Prasann Kumar, Shipa Rani Dey and Debjani Choudhury
Heavy metals like cadmium (Cd), mercury (Hg), bismuth (Bi), and arsenic (As) are potent and harmful poisonous sources that cause havoc on health conditions for the population of the world. However, the response of our crop species to these potent heavy metals-related toxicity is still left to be fully understood. It is a matter of great concern, as we are heavily dependent on crop species like rice, wheat, peas, etc. Our study here aims to learn about the defensive mechanism of Pisum sativum L. aided with putrescine and mycorrhiza against the stress created by Cd-related toxicity. We quantified physiological parameters such as the membrane-related injury and stability index. We further measured the total free proline content, lipid peroxidation content, and SOD activity. We executed our quantitative experiments on the stressed pea plants due to the exogenously applied Cd-toxicity in the presence and absence of mycorrhiza and putrescine. Insights of our significant results will improve the understanding of readers of the role of mycorrhiza and putrescine in improvising the tolerance level of a pea plant over Cd-related toxicity.
Afficher plus [+] Moins [-]Machine Learning-based Calibration Approach for Low-cost Air Pollution Sensors MQ-7 and MQ-131
2024
L. R. S. D. Rathnayake, G. B. Sakura, N. A. Weerasekara and P. D. Sandaruwan
Air quality is a vital concern globally, and Sri Lanka, according to WHO statistics, faces challenges in achieving optimal air quality levels. To address this, we introduced an innovative IoT-based Air Pollution Monitoring (APM) Box. This solution incorporates readily available Commercial Off-The-Shelf (COTS) sensors, specifically MQ-7 and MQ-131, for measuring concentrations of Carbon Monoxide (CO) and Ozone (O3) ,Arduino and "ThingSpeak" platform. Yet, those COTS sensors are not factory-calibrated. Therefore, we implemented machine learning algorithms, including linear regression and deep neural network models, to enhance the accuracy of CO and O3 concentration measurements from these non-calibrated sensors. Our findings indicate promising correlations when dealing with MQ-7 and MQ-131 measurements after removing outliers.
Afficher plus [+] Moins [-]Removal of Nickel from Industrial Wastewater by an Agro-based Composite Adsorbent
2024
R. M. Bhagat and S. R. Khandeshwar
For many years, especially in emerging nations like India, the environment has been threatened by the increased output of industrial wastes and heavy metal toxicity. The usage of inexpensive adsorbents has recently attracted a lot of attention in studies on the removal of heavy metals like nickel from industrial wastewater. The use of agro-based adsorbent is an alternative to conventionally used activated charcoal. In this research, adsorption experiments were carried out using agro-based adsorbent prepared from rice husk, wheat husk, and soybean husk to reduce nickel from industrial wastewater. The adsorption process is simple, economical, and effective is the most preferred method used for the removal of toxic metals like nickel from industrial wastewater. Adsorbents prepared from these husks can be effectively used for adsorption due to low cost & high availability. Characterization of agricultural material by various tests like XRF, proximate analysis, bulk density, and iodine number was conducted on agro-based adsorbents to know the co-relation between removal efficiency and adsorption capacity. The effect of turbidity and pH parameters on Ni removal efficiency is also studied. Results indicated that wheat husk adsorbent appeared to be the most effective for the adsorption of Ni from wastewater as compared to soybean husk and rice husk adsorbent. Wheat husk, soybean husk, and rice husk have removal efficiency in the range of 62.50 to 73.33. Composite absorbents CA-2 with the proportion of 50% wheat husk, 33% soybean husk, and 17% rice husk have 82.50% efficiency, and CA-3 has 80.83% efficiency in removing Nickel. Wheat husk adsorbent, CA-2, and CA-3 are more effectively and sustainably used for the treatment of industrial wastewater to remove heavy metals.
Afficher plus [+] Moins [-]A Projection Study of Gaseous Pollutants Formed, Potential Health Effects and Clinical Codification in Piyungan Landfill
2024
E. Fikri, Y. W. Firmansyah A. S. Afifah and R. K. Dewi
The world is currently facing significant environmental challenges due to increasing urbanization and globalization. Human activities can produce greenhouse gases (GHGs) such as CO2 and CH4. One of the contributors to GHG generation is the open dumping of Municipal Solid Waste (MSW), particularly because much of the waste is organic. It undergoes anaerobic decomposition, leading to the formation of GHGs, particularly methane. However, CH4 has a high potential for energy generation, and if harnessed properly, it can be highly beneficial. This study aims to assess the total air pollutants emitted from the landfill gas (LFG), including methane (CH4), carbon dioxide (CO2), and nonmethane organic compounds (NMOC) at the Regional Piyungan landfill in D.I. Yogyakarta province. The study also projected the year when the production of these gaseous pollutants would peak and when they are expected to be exhausted. Additionally, the study aimed to identify the potential health problems and clinical codification caused by these gaseous pollutants. To achieve these objectives, the LandGEM 3.03 version of the model developed by USEPA was used for the period 2023-2071. Clinical coding used the 2019 version of the ICD-10 reference. The estimated values for total LFG were 1.648E+04 (2024) and 1.584E+04 (2025) Mg/year, while CH4 was estimated at 4.403E+03 (2024) and 4.230E+03 (2025) Mg/year. CO2 was estimated to be 1,208E+04 (2024) and 1,161E+04 (2025) Mg/year, and NMOC was projected at 2,839E+01 (2024) and 2,727E+01 (2025) Mg/year. Some of the toxic effects that can occur cause respiratory, visual, and mental disorders with a variety of clinical codes.
Afficher plus [+] Moins [-]The Global Clothing Oversupply: An Emerging Environmental Crisis
2024
M. S. Neethu and R. Bhuvaneswari
Fashion is a potent visual indicator of our times, almost a language that speaks for us and something popular or in style, a zeitgeist. Fashion, specifically fast fashion, has gained prominence in discussions about fashion, sustainability, and environmental awareness. The speed of the hedonic treadmills continues to increase exponentially, and the so-called fast fashion has won legions of young fans who can snap up relatively cheap clothes online, but the trend masks darker environmental problems. Concerns about the fashion industry’s environmental impact have increased in recent years. This realization was prompted by accumulated evidence of a rise in clothing consumption due to greater availability and affordability. This shift has fostered not only heedless and hasty clothing consumption but also heedless and hasty clothing disposal. This article attempts to elucidate the relationship between humans and the environment. It also tries to incorporate the concepts of sustaincentrism and traceability to pave the way for sustainable development. This study employs an experimental survey method to ascertain consumers’ perceptions of sustainable fashion and to assess the implications of their current purchasing behavior. The SPSS software is used to analyze the data’s reliability, and regression analysis was employed to determine the fashion industry’s environmental impact. The survey results indicate optimism for a rise in ethical business strategies and the adoption of sustainable approaches within the fashion industry, thereby establishing a green economy.
Afficher plus [+] Moins [-]Energy Requirement of Wastewater Treatment Plants: Unleashing the Potential of Microalgae, Biogas and Solar Power for Sustainable Development
2024
Urvashi Gupta, Abhishek Chauhan, Hardeep Singh Tuli, Seema Ramniwas, Moyad Shahwan and Tanu Jindal
Sustainable energy legislation in the modern world is the primary strategy that has raised the benchmark for energy and environmental security globally. The rapid growth in the human population has led to rising energy needs, which are predicted to increase by at least 50% by 2030. Waste management and environmental pollution present the biggest challenge to developing countries. The improvement of energy efficiency while ensuring higher nutritional evacuation wastewater treatment plants (WWTPs) is a significant problem for many wastewater treatment plants. Some treatment techniques require high energy input, which makes them expensive to remediate water use. Pollutants like chemical pesticides, hydrocarbons, colorants (dyes), surfactants, and aromatic compounds are present in wastewater and are contributing to other problems. Israel consumes 10% of the global energy supply, significantly more than other countries. The lagoon and trickling filters are the most widely used technologies in South African WWTPs, where the electricity intensity ranges from 0.079 to 0.41 kWh.m-3 (Wang et al. 2016). Korea and India use almost the same energy (0.24 kWh.m-3). An estimated one-fifth of the energy used in a municipality’s WWTPs is used for overall public utilities, and this percentage is anticipated to rise by 20% over the next 15 years owing to expanding consumption of water and higher standards. In this review paper, we examined the potential for creating energy-self-sufficient WWTPs and discussed how much energy is currently consumed by WWTPs. The desirable qualities of microalgae, their production on a global level, technologies for treating wastewater with biogas and solar power, its developments, and issues for sustainable development are highlighted. The scientific elaboration of the mechanisms used for pollutant degradation using solar energy, as well as their viability, are the key issues that have been addressed.
Afficher plus [+] Moins [-]Determination of Mycotoxigenic Fungi and Total Aflatoxins in Stored Corn from Sites of Puebla and Tlaxcala, Mexico
2024
K. Saez-Gomez, R. Avila-Sosa, M. Huerta-Lara, F. Avelino-Flores and R. Munguia-Pérez
This paper aimed to evaluate the contamination with mycotoxigenic fungi and total aflatoxins in stored corn from different sites in Puebla and Tlaxcala, Mexico. Methodology. The study was conducted at two sites in Puebla (San Salvador El Seco and Junta Auxiliar La Resurrección) and two sites in Tlaxcala (Tlaltepango and Nativitas). A total of 80 samples of stored corn were collected. Identification of Aspergillus flavus was performed by microculture techniques and specific taxonomic keys (macromorphological and micromorphological). Then, samples of contaminated corn were selected, and aflatoxin production was confirmed using a direct solid-phase ELISA kit. A total of 25 A. flavus strains were identified. Other possible mycotoxin-producing fungi were Penicillium (n=52) and Fusarium (n=19). Regarding total aflatoxin contamination, all samples were contaminated within a range of 1.589 to 11.854 μg/kg, and the average concentration was 6.3 μg/kg corn. Implications. The detection of mycotoxigenic fungi in the samples tested and of aflatoxins in corn highlights the importance of monitoring these fungi. Since food safety is at risk, it shows the need for methods to control these fungi and their metabolites.
Afficher plus [+] Moins [-]