Affiner votre recherche
Résultats 481-490 de 7,280
Fe3O4-urea nanocomposites as a novel nitrogen fertilizer for improving nutrient utilization efficiency and reducing environmental pollution
2022
Guha, Titir | Gopal, Geetha | Mukherjee, Amitava | Kundu, Rita
Almost 81% of nitrogen fertilizers are applied in form of urea but most of it is lost due to volatilization and leaching leading to environmental pollution. In this regard, slow-release nano fertilizers can be an effective solution. Here, we have synthesized different Fe₃O₄-urea nanocomposites with Fe₃O₄ NPs: urea ratio (1:1, 1:2, 1:3) ie. NC-1, 2, and 3 respectively, and checked their efficacy for growth and yield enhancement. Oryza sativa L. cv. Swarna seedlings were treated with different NCs for 14 days in hydroponic conditions and significant up-regulation of photosynthetic efficiency and nitrogen metabolism were observed due to increased availability of nitrogen and iron. The discriminant functional analysis confirmed that the NC3 treatment yielded the best results so further gene expression studies were performed for NC-3 treated seedlings. Significant changes in expression profiles of ammonia and nitrate transporters indicated that NC-3 treatment enhanced nitrogen utilization efficiency (NUE) due to sustained slow release of urea. From pot experiments, we found significant enhancement of growth, grain nutrient content, and NUE in NC supplemented sets. 1.45 fold increase in crop yield was achieved when 50% N was supplemented in form of NC-3 and the rest in form of ammonium nitrate. NC supplementation can also play a vital role in minimizing the use of bulk N fertilizers because, when 75% of the recommended N dose was supplied in form of NC-3, 1.18 fold yield enhancement was found. Thus our results highlight that, slow-release NC-3 can play a major role in increasing the NUE of rice.
Afficher plus [+] Moins [-]Using food waste to cultivate safe, good-quality Sabah (giant hybrid) grouper: Dioxins and dioxin-like polychlorinated biphenyls
2022
Man, Yu Bon | Zhang, Feng | Mo, Wing Yin | Chow, Ka Lai | Wong, Ming Hung
Dioxins and dioxin-like polychlorinated biphenyls (dl-PCBs) in fish fillet counteract the health benefits of fish products. In this study, food waste was used as a protein alternative to replacing fishmeal commonly used in the commercial fish feed, aiming to cultivate Sabah grouper with acceptable levels of dioxins and dl-PCBs. The concentrations of dioxins and dl-PCBs, as well as the fish growth performance, were compared between the fish groups fed with food waste-based feed (FWBF) and commercial feed (Nanyu®, control). The results showed that the concentrations of polychlorinated dibenzo-p-dioxins (PCDDs) (1.22 pg/g dry weight (d.w.)) and non-ortho-dl-PCBs (13.0 pg/g d.w.) were significantly lower (p < 0.05) in the FWBF than in the control feed (commercial feed) (PCDDs: 2.35 pg/g d.w.; non-ortho-dl-PCBs: 27.2 pg/g d.w.). The growth performance of the fish group fed with the FWBF was comparable to that fed with the control feed. There were no significant differences between the WHO₂₀₀₅-TEQ values of different fish fillets (1.00, 1.11, and 1.10 pg WHO₂₀₀₅-TEQ/g d.w. for FWBF group, control feed group, and local market fish, respectively). Based on the guidelines provided by European Food Safety Authority (ESFA) and U.S. Environmental Protection Agency (USEPA), the fish fed with the FWBF were safe for human consumption (hazard index values: 0.284–0.522; cancer risk range: 2.59–2.97 × 10⁻⁵). The findings of this study suggest that food waste could serve as an alternative protein source for cultivating Sabah grouper with acceptable levels of dioxins and dl-PCBs.
Afficher plus [+] Moins [-]Foliar application of lambda-cyhalothrin modulates root exudate profile and the rhizosphere bacteria community of dioecious Populus cathayana
2022
He, Yue | Zhu, Zuodong | Zhou, Zhenghu | Lu, Tao | Kumar, Amit | Xia, Zhichao
Dioecious plants show sexual differences in resistance traits to abiotic stresses. However, the effects of exogenous pesticide application on female and male plant growth and their associated adaptation mechanisms are unclear. Our study investigated the effects of the broad-spectrum pesticide lambda-cyhalothrin (λ-CY) on dioecious Populus cathayana growth and explored the factors through which λ-CY changed the rhizosphere bacterial community and physicochemical soil properties via sex-specific metabolomics. The sequential application of λ-CY significantly suppressed male shoot- and root biomass, with little effect on the growth of females. Females possessed a higher intrinsic chemo-diversity within their root exudates, and their levels of various metabolites (sugars, fatty acids, and small organic acids) increased after exposure to λ-CY with consequences on bacterial community composition. Maintaining high bacterial alpha diversity and recruiting specific bacterial groups slowed down the loss of rhizosphere nutrients in females. In contrast, the reduction in bacterial alpha diversity and network structure stability in males was associated with lower rhizosphere nutrient availability. Spearman's correlation analysis revealed that several bacterial groups were positively correlated with the root secretion of lipids and organic acids, suggesting that these metabolites can affect the soil bacterial groups actively involved in the nutrient pool. This study provided novel insights that root exudates and soil microbial interactions may mediate sex-specific differences in response to pesticide application.
Afficher plus [+] Moins [-]Features of the accumulation of macroplastic on the river bottom in the Mekong delta and the impact on fish and decapods
2022
Karpova, Evgeniia | Abliazov, Ernes | Statkevich, Svetlana | Dinh, Cu Nguyen
For the first time, a quantitative assessment of this pollutant was made at the bottom of the rivers of the Mekong basin, and the features of its accumulation and dynamics in bottom sediments and relationship with abundance of fish and decapods were investigated. Sampling of materials for the research was carried out by bottom trawls in the Mekong delta in Vietnam. The amount of macroplastic caught by the trawl from the bottom averaged 33.4 g/100 m². The maximum values of the waste content (up to 923.2 g/100 m²) were confined to the districts of large cities. The distribution of macroplastic was characterized by high spatio-temporal variability. Its amount was significantly (p < 0.05) higher in branches with low monthly flow, in shallow-water areas, as well as in the low-water period. During the flood period, which usually lasts from July to November, the amount of macroplastic at the bottom decreased by an average of 2.5 times. In this study a significant relationship between the number of animals and the mass of macroplastics was statistically proven for most species of fish and decapods. The substrate, containing a significant amount of plastic fragments, attracted aquatic organisms. All in all, we present results for poorly understood processes of transport, deposition and influence of plastic debris in large rivers in regions of monsoon subequatorial climate and show that more efforts should be dedicated to further unravel potentially complex pathways of the plastic exposure to water ecosystems.
Afficher plus [+] Moins [-]Latitudinal difference in the molecular distributions of lipid compounds in the forest atmosphere in China
2022
Zhang, Donghuan | Ren, Hong | Hu, Wei | Wu, Libin | Ren, Lujie | Deng, Junjun | Zhang, Qiang | Sun, Yele | Wang, Zifa | Kawamura, Kimitaka | Fu, Pingqing
Lipids are important biogenic markers to indicate the sources and chemical process of aerosol particles in the atmosphere. To better understand the influences of biogenic and anthropogenic sources on forest aerosols, total suspended particles (TSP) were collected at Mt. Changbai, Shennongjia, and Xishuangbanna that are located at different climatic zones in northeastern, central and southwestern China. n-Alkanes, fatty acids and n-alcohols were detected in the forest aerosols based on gas chromatography-mass spectrometry. The total concentrations of aliphatic compounds ranged from 15.3 ng m⁻³ to 566 ng m⁻³, and fatty acids were the most abundant (44–95%) followed by n-alkanes and n-alcohols. Low molecular weight- (LFAs) and unsaturated fatty acids (UnFAs) showed diurnal variation with higher concentrations during the nighttime in summer, indicating the potential impact from microbial activities on forest aerosols. The differences of oleic acid (C₁₈:₁) and linoleic acid (C₁₈:₂) concentrations between daytime and nighttime increased at lower latitude, indicating more intense photochemical degradation occurred at lower latitude regions. High levels of n-alkanes during daytime in summer with higher values of carbon preference indexes, combining the strong odd carbon number predominance with a maximum at C₂₇ or C₂₉, implied the high contributions of biogenic sources, e.g., higher plant waxes. In contrast, higher concentrations of low molecular weight n-alkanes were detected in winter forest aerosols. Levoglucosan showed a positive correlation (R² > 0.57) with high- and low molecular weight aliphatic compounds in Mt. Changbai, but such a correlation was not observed in Shennongjia and Xishuangbanna. These results suggest the significant influence of biomass burning in Mt. Changbai, and fossil fuel combustion might be another important anthropogenic source of forest aerosols. This study adds useful information to the current understanding of forest organic aerosols at different geographical locations in China.
Afficher plus [+] Moins [-]Remodeling on adipocytic physiology of organophosphorus esters in mature adipocytes
2022
Liu, Ying | Le, Yifei | Xu, Mengting | Wang, Wanyue | Chen, Hang | Zhang, Quan | Wang, Cui
The emerging endocrine disruption chemicals organophosphate esters (OPEs) pose high risk of metabolic disruption. However, limited information is available on physiological disturbance of OPEs on adipose, a major endocrine and metabolic organ. In this study, physiological change was investigated after exposing 3T3-L1fully differentiated adipocytes to six OPEs at non-cytotoxic concentrations. We found two chlorinated-OPEs (tris-(2-chloro-1-(chloromethyl) ethyl) phosphate (TDCPP) and tris(2-chloroisopropyl) phosphate (TCPP)) and two alkyl-OPEs (tributyl phosphate (TBP) and tris (2-butoxyethyl) phosphate (TBEP)) induced inflammation-like adipokines (chemoattractant protein 1 and interleukin-6), respectively. Increment of insulin-resistance-related hormones (resistin and leptin) were observed under TDCPP, TCPP, and TBP exposure. Functional and mechanistic investigation revealed that all of the compounds inhibited lipolysis at basal level through dephosphorylated HSLˢᵉʳ⁵⁶³, the rate limiting enzyme of lipolysis. Triphenyl phosphate (TPhP), tricresyl phosphate (TCP), TDCPP, TBP and TBEP enhanced glucose uptake at both basal and insulin-stimulated status. We evidenced that impact was independent of the classical pIRSˢᵉʳ⁶³⁹/pAKTˢᵉʳ⁴⁷³ nor the insulin-independent AMPK pathway. The elevated mRNA of slc2a4 and its transcriptional factor LXRα may, at least partially, explain for the increase of glucose uptake. Given the focus within the endocrine disruption on glands, it would be prudent not to ignore endocrinal impact on adipocytes.
Afficher plus [+] Moins [-]Seasonal pollutant levels in littoral high-Arctic amphipods in relation to food sources and terrestrial run-off
2022
Skogsberg, Emelie | McGovern, Maeve | Poste, Amanda | Jonsson, Sofi | Arts, Michael T. | Varpe, Øystein | Borgå, Katrine
Increasing terrestrial run-off from melting glaciers and thawing permafrost to Arctic coastal areas is expected to facilitate re-mobilization of stored legacy persistent organic pollutants (POPs) and mercury (Hg), potentially increasing exposure to these contaminants for coastal benthic organisms. We quantified chlorinated POPs and Hg concentrations, lipid content and multiple dietary markers, in a littoral deposit-feeding amphipod Gammarus setosus and sediments during the melting period from April to August in Adventelva river estuary in Svalbard, a Norwegian Arctic Aarchipelago. There was an overall decrease in concentrations of ∑POPs from April to August (from 58 ± 23 to 13 ± 4 ng/g lipid weight; lw), Hg (from 5.6 ± 0.7 to 4.1 ± 0.5 ng/g dry weight; dw) and Methyl Hg (MeHg) (from 5 ± 1 to 0.8 ± 0.7 ng/g dw) in G. setosus. However, we observed a seasonal peak in penta- and hexachlorobenzene (PeCB and HCB) in May (2.44 ± 0.3 and 23.6 ± 1.7 ng/g lw). Sediment concentrations of POPs and Hg (dw) only partly correlated with the contaminant concentrations in G. setosus. Dietary markers, including fatty acids and carbon and nitrogen stable isotopes, indicated a diet of settled phytoplankton in May–July and a broader range of carbon sources after the spring bloom. Phytoplankton utilization and chlorobenzene concentrations in G. setosus exhibited similar seasonal patterns, suggesting a dietary uptake of chlorobenzenes that is delivered to the aquatic environment during spring snowmelt. The seasonal decrease in contaminant concentrations in G. setosus could be related to seasonal changes in dietary contaminant exposure and amphipod ecology. Furthermore, this decrease implies that terrestrial run-off is not a significant source of re-mobilized Hg and legacy POPs to littoral amphipods in the Adventelva river estuary during the melt season.
Afficher plus [+] Moins [-]Effect-directed analysis of estrogenic chemicals in sediments from an electronic-waste recycling area
2022
Ma, Qianchi | Yang, Xiaoxi | Guo, Yunhe | Wang, Yi | Liu, Yanna | Zhang, Songyan | Xie, Heidi Qunhui | Xiang, Tongtong | Li, Zikang | Nie, Tong | Yan, Yuhao | Qu, Guangbo | Jiang, Guibin
Electronic waste (e-waste) pollution is of great concern due to the release of hazardous chemicals during the improper e-waste disposal. Many chemicals leached from e-waste were reported to pose estrogenic effects. To date, little is known regarding the occurrence and biological effects of estrogenic chemicals in sediments near an e-waste area. In this study, an effect-directed analysis (EDA) is applied to determine the estrogenic chemicals in sediments of four sites collected from a typical e-waste recycling city in China. Following screening with the ER-CALUX assay, the extract of sample with the most potent effect was subjected in fractionation using reverse phase liquid chromatography. Based on a target analysis for the active fractions, four compounds, including estrone, 17β-estradiol, 17α-ethinylestradiol and bisphenol A, were identified, and these contributed to 17% of the total toxic effects in the sample. A further nontarget analysis screened four candidates, namely diethylstilbestrol (DES), hexestrol (HES), nandrolone and durabolin, and the total contribution was found to be 48% from the active sample. Specifically, DES and HES were only detected in the active sample and were found to be the primary drivers of estrogenic effects. An examination of the identified chemicals in the four sites indicated that these estrogenic chemicals may originate from e-waste recycling, livestock excretion and domestic waste. These findings uncovered the estrogenic pollutants in sediments from an e-waste area. Considering single endpoint in biological assay is not abundant to screen chemicals with different toxic effects, further EDA studies with multiple endpoints are required to better understand the occurrence of representative or unknown chemicals in e-waste-polluted areas.
Afficher plus [+] Moins [-]Effect of daily co-exposure to inulin and chlorpyrifos on selected microbiota endpoints in the SHIME® model
2022
Joly Condette, Claire | Djekkoun, Narimane | Reygner, Julie | Depeint, Flore | Delanaud, Stephane | Rhazi, Larbi | Bach, Veronique | Khorsi-Cauet, Hafida
The intestinal microbiota has a key role in human health via the interaction with the somatic and immune cells in the digestive tract environment. Food, through matrix effect, nutrient and non-nutrient molecules, is a key regulator of microbiota diversity. As a food contaminant, the pesticide chlorpyrifos (CPF) has an effect on the composition of the intestinal microbiota and induces perturbation of microbiota. Prebiotics (and notably inulin) are known for their ability to promote an equilibrium of the microbiota that favours saccharolytic bacteria. The SHIME® dynamic in vitro model of the human intestine was exposed to CPF and inulin concomitantly for 30 days, in order to assess variations in both the bacterial populations and their metabolites. Various analyses of the microbiota (notably temporal temperature gradient gel electrophoresis) revealed a protective effect of the prebiotic through inhibition of the enterobacterial (E. coli) population. Bifidobacteria were only temporarily inhibited at D15 and recovered at D30. Although other potentially beneficial populations (lactobacilli) were not greatly modified, their activity and that of the saccharolytic bacteria in general were highlighted by an increase in levels of short-chain fatty acids and more specifically butyrate. Given the known role of host-microbiota communication, CPF's impact on the body's homeostasis remains to be determined.
Afficher plus [+] Moins [-]Microplastics as vectors of radioiodine in the marine environment: A study on sorption and interaction mechanism
2022
Rout, Sabyasachi | Yadav, Sonali | Joshi, Vikram | Karpe, Rupali | Pulhani, Vandana | Kumar, A.V.
Radioiodine is one of the long-lived fission products and also an important radionuclide released during nuclear accidents, which generates interest in its environmental fate. Its sorption has been studied in a wide range of materials, but no equivalent study exists for microplastics, an emerging environmental vector. Weathering and biofilm formation on microplastics can enhance radioiodine sorption. For the first time, we're reporting how radioiodine interacts with different types of polyethylene derived microplastics (pristine, irradiated, and biofilm developed microplastics). This study revealed that exposure to radiation and the marine environment significantly alters the physico-chemical properties of microplastics. In particular, in marine-exposed samples, a signature of biofilm development was detected. Speciation study indicates that iodine exists in the iodide form in the studied marine environment. The study revealed that, iodide ions attach to biofilm-developed microplastics via electrostatic, ion-dipole, pore filling, and van der Waals interactions. Pore filling, ion-dipole, and van der Waals interactions may cause iodide binding to irradiated microplastics, whereas pore-filling and van der Waals interactions cause iodide binding to pristine microplastics. The distribution coefficient (Kd) of iodine on microplastics is positively correlated with biofilm biomass, which signifies the role of biofilm in radioiodine uptake. The Kd indicates microplastics are potential iodide accumulators and could be a possible vector in the marine system.
Afficher plus [+] Moins [-]