Affiner votre recherche
Résultats 501-510 de 4,309
Characteristics of cadmium uptake and membrane transport in roots of intact wheat (Triticum aestivum L.) seedlings Texte intégral
2017
Wheat is one of several cereals that is capable of accumulating higher amounts of Cd in plant tissues. It is important to understand the Cd²⁺ transport processes in roots that result in excess Cd accumulation. Traditional destructive technologies have limited capabilities in analyzing root samples due to methodological limitations, and sometimes may result in false conclusions. The mechanisms of Cd²⁺ uptake into the roots of wheat seedlings (Triticum aestivum L.) were investigated by assessing the impact of various inhibitors and channel blockers on Cd accumulation as well as the real-time net Cd²⁺ flux at roots with the non-destructive scanning ion-selective electrode technique. The P-type ATPase inhibitor Na3VO4 (500 μM) had little effect on Cd uptake (p < 0.05) and the kinetics of transport in the root of wheat, suggesting that Cd²⁺ uptake into wheat root cells is not directly dependent on H⁺ gradients. While, the uncoupler 2,4-dinitrophenol significantly limited Cd²⁺ uptake (p < 0.05) and transport kinetics in the root of wheat, suggesting the existence of metabolic mediation in the Cd²⁺ uptake process by wheat. The Cd content at the whole-plant level in wheat was significantly (p < 0.05) decreased upon pretreatment with the Ca²⁺ channel blockers La³⁺ or Gd³⁺ and Verapamil, but not in case of pretreatment with the K⁺ channel blocker tetraethylammonium (TEA). In addition, the inhibitors of the Ca²⁺ channel, as well as high concentrations of Ca²⁺, reduced the real-time net Cd²⁺ fluxes at the root surface in SIET experiments. These results indicate that Cd²⁺ moves across the plasma lemma of the wheat root via Ca²⁺ channels. In addition, our results suggested a role for protein synthesis in mediating Cd²⁺ uptake and transport by wheat.
Afficher plus [+] Moins [-]Impact of commuting exposure to traffic-related air pollution on cognitive development in children walking to school Texte intégral
2017
Impact of commuting exposure to traffic-related air pollution on cognitive development in children walking to school Texte intégral
2017
A few studies have found associations between the exposure to traffic-related air pollution at school and/or home and cognitive development. The impact on cognitive development of the exposure to air pollutants during commuting has not been explored. We aimed to assess the role of the exposure to traffic-related air pollutants during walking commute to school on cognitive development of children. We performed a longitudinal study of children (n = 1,234, aged 7–10 y) from 39 schools in Barcelona (Catalonia, Spain) who commuted by foot to school. Children were tested four times during a 12-month follow-up to characterize their developmental trajectories of working memory (d’ of the three-back numbers test) and inattentiveness (hit reaction time standard error of the Attention Network Test). Average particulate matter ≤2.5 μm (PM2.5), Black Carbon (BC) and NO2 concentrations were estimated using Land Use Regression for the shortest walking route to school. Differences in cognitive growth were evaluated by linear mixed effects models with age-by-pollutant interaction terms. Exposure to PM2.5 and BC from the commutes by foot was associated with a reduction in the growth of working memory (an interquartile range increase in PM2.5 and BC concentrations decreased the annual growth of working memory by 5.4 (95% CI [-10.2, -0.6]) and 4.6 (95% CI [-9.0, -0.1]) points, respectively). The findings for NO2 were not conclusive and none of the pollutants were associated with inattentiveness. Efforts should be made to implement pedestrian school pathways through low traffic streets in order to increase security and minimize children's exposure to air pollutants.
Afficher plus [+] Moins [-]Impact of commuting exposure to traffic-related air pollution on cognitive development in children walking to school Texte intégral
2017
Alvarez-Pedrerol, Mar | Rivas, Ioar | López-Vicente, Mònica | Suades-González, Elisabet | Donaire-Gonzalez, David | Cirach, Marta | de Castro, Montserrat | Esnaola, Mikel | Basagaña, Xavier | Dadvand, Payam | Nieuwenhuijsen, Mark | Sunyer, Jordi | 0000-0002-4743-619X | 0000-0003-2337-1712
A few studies have found associations between the exposure to traffic-related air pollution at school and/or home and cognitive development. The impact on cognitive development of the exposure to air pollutants during commuting has not been explored. We aimed to assess the role of the exposure to traffic-related air pollutants during walking commute to school on cognitive development of children. We performed a longitudinal study of children (n = 1,234, aged 7-10 y) from 39 schools in Barcelona (Catalonia, Spain) who commuted by foot to school. Children were tested four times during a 12-month follow-up to characterize their developmental trajectories of working memory (d' of the three-back numbers test) and inattentiveness (hit reaction time standard error of the Attention Network Test). Average particulate matter ≤2.5 μm (PM2.5), Black Carbon (BC) and NO2 concentrations were estimated using Land Use Regression for the shortest walking route to school. Differences in cognitive growth were evaluated by linear mixed effects models with age-by-pollutant interaction terms. Exposure to PM2.5 and BC from the commutes by foot was associated with a reduction in the growth of working memory (an interquartile range increase in PM2.5 and BC concentrations decreased the annual growth of working memory by 5.4 (95% CI [-10.2, -0.6]) and 4.6 (95% CI [-9.0, -0.1]) points, respectively). The findings for NO2 were not conclusive and none of the pollutants were associated with inattentiveness. Efforts should be made to implement pedestrian school pathways through low traffic streets in order to increase security and minimize children's exposure to air pollutants. | The research leading to these results has received funding from the European Community's Seventh Framework Program (ERC-Advanced Grant) under grant agreement number 268479 – the BREATHE project. Special thanks go to all the participant families and schools. We also acknowledge Cecilia Persavento, Judit González, Laura Bouso, and Pere Figueras for their contribution to the fieldwork. | Peer reviewed
Afficher plus [+] Moins [-]The response of soil and stream chemistry to decreases in acid deposition in the Catskill Mountains, New York, USA Texte intégral
2017
McHale, Michael R. | Burns, Douglas A. | Siemion, Jason | Antidormi, Michael
The Catskill Mountains have been adversely impacted by decades of acid deposition, however, since the early 1990s, levels have decreased sharply as a result of decreases in emissions of sulfur dioxide and nitrogen oxides. This study examines trends in acid deposition, stream-water chemistry, and soil chemistry in the southeastern Catskill Mountains. We measured significant reductions in acid deposition and improvement in stream-water quality in 5 streams included in this study from 1992 to 2014. The largest, most significant trends were for sulfate (SO42−) concentrations (mean trend of −2.5 μeq L−1 yr−1); hydrogen ion (H+) and inorganic monomeric aluminum (Alim) also decreased significantly (mean trends of −0.3 μeq L−1 yr−1 for H+ and −0.1 μeq L−1 yr−1 for Alim for the 3 most acidic sites). Acid neutralizing capacity (ANC) increased by a mean of 0.65 μeq L−1 yr−1 for all 5 sites, which was 4 fold less than the decrease in SO42− concentrations. These upward trends in ANC were limited by coincident decreases in base cations (−1.3 μeq L−1 yr−1 for calcium + magnesium). No significant trends were detected in stream-water nitrate (NO3−) concentrations despite significant decreasing trends in NO3− wet deposition. We measured no recovery in soil chemistry which we attributed to an initially low soil buffering capacity that has been further depleted by decades of acid deposition. Tightly coupled decreasing trends in stream-water silicon (Si) (−0.2 μeq L−1 yr−1) and base cations suggest a decrease in the soil mineral weathering rate. We hypothesize that a decrease in the ionic strength of soil water and shallow groundwater may be the principal driver of this apparent decrease in the weathering rate. A decreasing weathering rate would help to explain the slow recovery of stream pH and ANC as well as that of soil base cations.
Afficher plus [+] Moins [-]Study on spatial distribution of crop residue burning and PM2.5 change in China Texte intégral
2017
Yin, Shuai | Wang, Xiufeng | Xiao, Yi | Tani, Hiroshi | Zhong, Guosheng | Sun, Zhongyi
With China as the study area, MODIS MOD14A1 and MCD12Q1 products were used to derive daily crop residue burning spots from 2014 to 2015. After vectorization of crop residue burning pixels and with the use of fishnet, burning density distribution maps were eventually completed. Meanwhile, the daily air quality data from 150 cities in 2014 and 285 cities in 2015 were used to obtain daily and monthly PM2.5 distribution maps with the Kriging interpolation. The results indicate that crop residue burning occurs in a seasonal pattern, and its spatial distribution is closely related to farming activities. The annual PM2.5 in China decreased 11.81% from 2014 to 2015, and the distribution of PM2.5 in China's east and north is always higher than in China's west and south. Furthermore, the changes in PM2.5 exhibit a hysteresis after crop residue burning in summer and autumn-winter. Regarding summer crop residue burning in China's middle–east, the r between crop residue burning spots and PM2.5 is 0.6921 (P < 0.01) in 2014 and 0.5620 (P < 0.01) in 2015, while the correlation coefficient of autumn-winter crop residue burning in China's northeast is slightly lower with an r of 0.5670 (P < 0.01) in 2014 and 0.6213 (P < 0.01) in 2015. In autumn-winter, crop residue burning can induce evident PM2.5 increase in China's northeast, and that is more obvious than summer crop residue burning in China's middle–east. Furthermore, when data of summer and autumn-winter crop residue burning from 2014 to 2015 are compared, we can see that the change in number of crop residue burning spots significant changes PM2.5 in these regions. Both the summer and autumn-winter crop residue burning areas presented spatial consistency with high PM2.5. By contrast, the results from many aspects indicated that the crop residue burning in spring did not cause a notable change of PM2.5.
Afficher plus [+] Moins [-]Environmental hazard assessment of a marine mine tailings deposit site and potential implications for deep-sea mining Texte intégral
2017
Mestre, Nélia C. | Rocha, Thiago L. | Canals, M. (Miquel) | Cardoso, Cátia | Danovaro, Roberto | Dell’Anno, Antonio | Gambi, Cristina | Regoli, Francesco | Sanchez-Vidal, Anna | Bebianno, Maria João
Environmental hazard assessment of a marine mine tailings deposit site and potential implications for deep-sea mining Texte intégral
2017
Mestre, Nélia C. | Rocha, Thiago L. | Canals, M. (Miquel) | Cardoso, Cátia | Danovaro, Roberto | Dell’Anno, Antonio | Gambi, Cristina | Regoli, Francesco | Sanchez-Vidal, Anna | Bebianno, Maria João
Portmán Bay is a heavily contaminated area resulting from decades of metal mine tailings disposal, and is considered a suitable shallow-water analogue to investigate the potential ecotoxicological impact of deep-sea mining. Resuspension plumes were artificially created by removing the top layer of the mine tailings deposit by bottom trawling. Mussels were deployed at three sites: i) off the mine tailings deposit area; ii) on the mine tailings deposit beyond the influence from the resuspension plumes; iii) under the influence of the artificially generated resuspension plumes. Surface sediment samples were collected at the same sites for metal analysis and ecotoxicity assessment. Metal concentrations and a battery of biomarkers (oxidative stress, metal exposure, biotransformation and oxidative damage) were measured in different mussel tissues. The environmental hazard posed by the resuspension plumes was investigated by a quantitative weight of evidence (WOE) model that integrated all the data. The resuspension of sediments loaded with metal mine tails demonstrated that chemical contaminants were released by trawling subsequently inducing ecotoxicological impact in mussels’ health. Considering as sediment quality guidelines (SQGs) those indicated in Spanish action level B for the disposal of dredged material at sea, the WOE model indicates that the hazard is slight off the mine tailings deposit, moderate on the mine tailings deposit without the influence from the resuspension plumes, and major under the influence of the resuspension plumes. Portmán Bay mine tailings deposit is a by-product of sulphide mining, and despite differences in environmental setting, it can reflect the potential ecotoxic effects to marine fauna from the impact of resuspension of plumes created by deep-sea mining of polymetallic sulphides. A similar approach as in this study could be applied in other areas affected by sediment resuspension and for testing future deep-sea mining sites in order to assess the associated environmental hazards.
Afficher plus [+] Moins [-]Environmental hazard assessment of a marine mine tailings deposit site and potential implications for deep-sea mining Texte intégral
2017
Mestre, Nélia | Rocha, Thiago L. | Canals, Miquel | Cardoso, Cátia | Danovaro, Roberto | Dell’Anno, Antonio | Gambi, Cristina | Regoli, Francesco | Sanchez-Vidal, Anna | Bebianno, Maria João
Portmán Bay is a heavily contaminated area resulting from decades of metal mine tailings disposal, and is considered a suitable shallow-water analogue to investigate the potential ecotoxicological impact of deep-sea mining. Resuspension plumes were artificially created by removing the top layer of the mine tailings deposit by bottom trawling. Mussels were deployed at three sites: i) off the mine tailings deposit area; ii) on the mine tailings deposit beyond the influence from the resuspension plumes; iii) under the influence of the artificially generated resuspension plumes. Surface sediment samples were collected at the same sites for metal analysis and ecotoxicity assessment. Metal concentrations and a battery of biomarkers (oxidative stress, metal exposure, biotransformation and oxidative damage) were measured in different mussel tissues. The environmental hazard posed by the resuspension plumes was investigated by a quantitative weight of evidence (WOE) model that integrated all the data. The resuspension of sediments loaded with metal mine tails demonstrated that chemical contaminants were released by trawling subsequently inducing ecotoxicological impact in mussels' health. Considering as sediment quality guidelines (SQGs) those indicated in Spanish action level B for the disposal of dredged material at sea, the WOE model indicates that the hazard is slight off the mine tailings deposit, moderate on the mine tailings deposit without the influence from the resuspension plumes, and major under the influence of the resuspension plumes. Portmán Bay mine tailings deposit is a by-product of sulphide mining, and despite differences in environmental setting, it can reflect the potential ecotoxic effects to marine fauna from the impact of resuspension of plumes created by deep-sea mining of polymetallic sulphides. A similar approach as in this study could be applied in other areas affected by sediment resuspension and for testing future deep-sea mining sites in order to assess the associated environmental hazards. | info:eu-repo/semantics/publishedVersion
Afficher plus [+] Moins [-]Cerium oxide nanoparticles alter the salt stress tolerance of Brassica napus L. by modifying the formation of root apoplastic barriers Texte intégral
2017
Rossi, Lorenzo | Zhang, Weilan | Ma, Xingmao
Rapidly growing global population adds significant strains on the fresh water resources. Consequently, saline water is increasingly tapped for crop irrigation. Meanwhile, rapid advancement of nanotechnology is introducing more and more engineered nanoparticles into the environment and in agricultural soils. While some negative effects of ENPs on plant health at very high concentrations have been reported, more beneficial effects of ENPs at relatively low concentrations are increasingly noticed, opening doors for potential applications of nanotechnology in agriculture. In particular, we found that cerium oxide nanoparticles (CeO2NPs) improved plant photosynthesis in salt stressed plants. Due to the close connections between salt stress tolerance and the root anatomical structures, we postulated that CeO2NPs could modify plant root anatomy and improve plant salt stress tolerance. This study aimed at testing the hypothesis with Brassica napus in the presence of CeO2NPs (0, 500 mg kg−1 dry sand) and/or NaCl (0, 50 mM) in a growth chamber. Free hand sections of fresh roots were taken every seven days for three weeks and the suberin lamellae development was examined under a fluorescence microscope. The results confirmed the hypothesis that CeO2NPs modified the formation of the apoplastic barriers in Brassica roots. In salt stressed plants, CeO2NPs shortened the root apoplastic barriers which allowed more Na+ transport to shoots and less accumulation of Na+ in plant roots. The altered Na+ fluxes and transport led to better physiological performance of Brassica and may lead to new applications of nanotechnology in agriculture.
Afficher plus [+] Moins [-]Microcystin-leucine arginine exhibits immunomodulatory roles in testicular cells resulting in orchitis Texte intégral
2017
Chen, Yabing | Wang, Jing | Zhang, Qin | Xiang, Zou | Li, Dongmei | Han, Xiaodong
Microcystin-leucine arginine (MC-LR) causes testicular inflammation and hinders spermatogenesis. However, the molecular mechanisms underlying the immune responses to MC-LR in the testis have not been elucidated in detail. In this study, we show that MC-LR induced immune responses in Sertoli cells (SC), germ cells (GC), and Leydig cells (LC) via activating phosphatidylinositol 3-kinase (PI3K)/AKT/nuclear factor kappa B (NF-κB), resulting in the production of pro-inflammatory cytokines and chemokines including tumor necrosis factor alpha (TNF-α), interleukin-6 (IL-6), monocyte chemoattractant protein-1 (MCP-1), and chemokine (C-X-C motif) ligand 10 (CXCL10). The observed effects were attributed to reduced activity of protein phosphatases 2A (PP2A) as a result of binding of MC-LR to the catalytic subunit of PP2A in SC and GC. By contrast, innate immune responses were triggered by Toll-like receptor 2 (TLR2) in LC because MC-LR could not enter into the LC and subsequently inhibit the PP2A activity. PI3K/AKT/NF-κB were also activated in SC, GC, and LC in vivo, with the enrichment of TNF-α, IL-6, MCP-1, and CXCL10 in the testis. Following chronic exposure, MC-LR-treated mice exhibited decreased sperm counts and abnormal sperm morphology. Our data demonstrate that MC-LR can activate innate immune responses in testicular cells, which provides novel insights to explore the mechanism associated with MC-LR-induced orchitis.
Afficher plus [+] Moins [-]Association between ambient fine particulate matter and preterm birth or term low birth weight: An updated systematic review and meta-analysis Texte intégral
2017
Li, Xiangyu | Huang, Shuqiong | Jiao, Anqi | Yang, Xuhao | Yun, Junfeng | Wang, Yuxin | Xue, Xiaowei | Chu, Yuanyuan | Liu, Feifei | Liu, Yisi | Ren, Meng | Chen, Xi | Li, Na | Lu, Yuanan | Mao, Zongfu | Tian, Liqiao | Xiang, Hao
An increasing number of studies have been conducted to determine a possible linkage between maternal exposure to ambient fine particulate matter and effects on the developing human fetus that can lead to adverse birth outcomes, but, the present results are not consistent. A total of 23 studies published before July 2016 were collected and analyzed and the mean value of reported exposure to fine particulate matter (PM2.5) ranged from 1.82 to 22.11 We found a significantly increased risk of preterm birth with interquartile range increase in PM2.5 exposure throughout pregnancy (odds ratio (OR) = 1.03; 95% conditional independence (CI): 1.01–1.05). The pooled OR for the association between PM2.5 exposure, per interquartile range increment, and term low birth weight throughout pregnancy was 1.03 (95% CI: 1.02–1.03). The pooled ORs for the association between PM2.5 exposure per 10 increment, and term low birth weight and preterm birth were 1.05 (95% CI: 0.98–1.12) and 1.02 (95% CI: 0.93–1.12), respectively throughout pregnancy. There is a significant heterogeneity in most meta-analyses, except for pooled OR per interquartile range increase for term low birth weight throughout pregnancy. We here show that maternal exposure to fine particulate air pollution increases the risk of preterm birth and term low birth weight. However, the effect of exposure time needs to be further explored. In the future, prospective cohort studies and personal exposure measurements needs to be more widely utilized to better characterize the relationship between ambient fine particulate exposure and adverse birth outcomes.
Afficher plus [+] Moins [-]Transfer of antibiotics from wastewater or animal manure to soil and edible crops Texte intégral
2017
Antibiotics are added to agricultural fields worldwide through wastewater irrigation or manure application, resulting in antibiotic contamination and elevated environmental risks to terrestrial environments and humans. Most studies focused on antibiotic detection in different matrices or were conducted in a hydroponic environment. Little is known about the transfer of antibiotics from antibiotic-contaminated irrigation wastewater and animal manure to agricultural soil and edible crops. In this study, we evaluated the transfer of five different antibiotics (tetracycline, sulfamethazine, norfloxacin, erythromycin, and chloramphenicol) to different crops under two levels of antibiotic-contaminated wastewater irrigation and animal manure fertilization. The final distribution of tetracycline (TC), norfloxacin (NOR) and chloramphenicol (CAP) in the crop tissues under these four treatments were as follows: fruit > leaf/shoot > root, while an opposite order was found for sulfamethazine (SMZ) and erythromycin (ERY): root > leaf/shoot > fruit. The growth of crops could accelerate the dissipation of antibiotics by absorption from contaminated soil. A higher accumulation of antibiotics was observed in crop tissues under the wastewater treatment than under manure treatment, which was due to the continual irrigation that increased adsorption in soil and uptake by crops. The translocation of antibiotics in crops mainly depended on their physicochemical properties (e.g. log Kow), crop species, and the concentrations of antibiotics applied to the soil. The levels of antibiotics ingested through the consumption of edible crops under the different treatments were much lower than the acceptable daily intake (ADI) levels.
Afficher plus [+] Moins [-]The role of algae and cyanobacteria in the production and release of odorants in water Texte intégral
2017
Lee, Jechan | Rai, Prabhat Kumar | Jeon, Young Jae | Kim, Ki Hyun | Kwon, Eilhann E.
This review covers literatures pertaining to algal and cyanobacterial odor problems that have been published over the last five decades. Proper evaluation of algal and cyanobacterial odors may help establish removal strategies for hazardous metabolites while enhancing the recyclability of water. A bloom of microalgae is a sign of an anthropogenic disturbance in aquatic systems and can lead to diverse changes in ecosystems along with increased production of odorants. In general, because algal and cyanobacterial odors vary in chemistry and intensity according to blooming pattern, it is necessary to learn more about the related factors and processes (e.g., changes due to differences in taxa). This necessitates systematic and transdisciplinary approaches that require the cooperation of chemists, biologists, engineers, and policy makers.
Afficher plus [+] Moins [-]