Affiner votre recherche
Résultats 501-510 de 5,153
Response of CH4 emissions to straw and biochar applications in double-rice cropping systems: Insights from observations and modeling Texte intégral
2018
Chen, Dan | Wang, Cong | Shen, Jianlin | Li, Yong | Wu, Jinshui
Paddy soil plays an essential role in contributing to the emission of methane (CH₄), a potent greenhouse gas, to the atmosphere. This study aimed to demonstrate the effects of straw incorporation and straw-derived biochar amendment on CH₄ emissions from double-rice cropping fields and to explore their potential mechanisms based on in-situ field measurements conducted for a period of three years (2012–2014) and model analysis. The results showed that the improved soil aeration due to biochar amendment resulted in low CH₄ emissions and that sufficient substrate carbon availability in straw amendment treatments caused high CH₄ emissions. The newly developed CH₄ emission module for the water and nitrogen management model (WNMM), a process-based biophysical model, performed well when simulating both daily CH₄ fluxes and the annual cumulative CH₄ emissions under straw incorporation and biochar amendment. Results of our study indicate that the model has a great potential for upscaling and could benefit mechanism analyses about the factors regulating CH₄ emissions. Application of biochar into paddy fields provides a great opportunity to reduce CH₄ emissions, and the decrease in CH₄ emissions following biochar amendment with repeated crop cycles would sustain for a prolonged period.
Afficher plus [+] Moins [-]The phytotoxicities of decabromodiphenyl ether (BDE-209) to different rice cultivars (Oryza sativa L.) Texte intégral
2018
Li, Kelun | Chen, Jie | Zhu, Lizhong
Decabromodiphenyl ether (BDE-209), as a major component of brominated flame retardants, has been detected in the agricultural soil in considerable amount. Given that BDE-209 is toxic, ubiquitous and persistent, BDE-209 might induce toxic effects on rice cultivars planted in contaminated soil. A comparative study was conducted on phytotoxicities and GC-MS based antioxidant-related metabolite levels to investigate the differences of phytotoxicities of BDE-209 to rice cultivars in Yangtze River Delta of China. Rice seedlings were treated with BDE-209 at 0, 10, 50, 100 and 500 μg/L in a hydroponic setup. Results showed that BDE-209-induced phytotoxicites were cultivar-dependent and that the antioxidant defense systems in the cultivars were disturbed differently. Among the three selected cultivars (Jiayou 5, Lianjing 7 and Yongyou 9), Jiayou 5 and Lianjing 7 displayed lower toxic effects than Yongyou 9 in terms of the growth inhibition, lipid peroxidation and DNA damage. The increases of antioxidant enzymes were significantly higher in Jiayou 5 and Lianjing 7 than those in Yongyou 9. Multivariate analysis of antioxidant-related metabolites in the three cultivars indicated that l-tryptophan and l-valine were the most important ones among 10 metabolites responsible for the separation of cultivars. The up-regulation of l-tryptophan and l-valine were likely plant strategies to increase their tolerance. The current results provided an insight into the development of rice cultivars with higher BDE-209 tolerance.
Afficher plus [+] Moins [-]Are ambient volatile organic compounds environmental stressors for heart failure? Texte intégral
2018
Ran, Jinjun | Qiu, Hong | Sun, Shengzhi | Yang, Aimin | Tian, Linwei
Numerous epidemiological studies have indicated the adverse cardiovascular effects of air pollution on heart failure (HF) risk. However, little data are available directly evaluating the association of ambient volatile organic compounds (VOCs) with HF risk. We aimed to estimate the short-term effects of ambient VOCs on HF emergency hospitalizations in Hong Kong and to evaluate whether the associations were modified by sex and age.We collected the daily VOCs concentrations from the Hong Kong Environmental Protection Department between April 2011 to December 2014. HF emergency hospital admission data were obtained from the Hospital Authority of Hong Kong. Generalized additive model (GAM) integrated with the distributed lag model (DLM) was used to estimate the excess risks of HF emergency hospitalizations with ambient concentrations of each VOCs groups – alkane, alkene, alkyne, benzene and substituted benzene.We observed short-term effects of alkyne and benzene on an increased risk of HF emergency hospitalizations. The cumulative effect over 0–6 lag days (dlm₀₋₆) for an IQR increment of alkyne (1.17 ppb) was associated with 4.2% (95% CI: 1.18%–7.26%) increases of HF emergency hospitalizations, while the corresponding effect estimate over dlm₀₋₂ for benzene per IQR (0.43 ppb) was 2.7% (95% CI: 0.39%–5.04%). Each VOCs groups was significantly associated with HF emergency hospitalizations in men.Ambient volatile organic compounds, particularly alkyne and benzene, were associated with increased risks of heart failure in the Hong Kong population.
Afficher plus [+] Moins [-]Excessive ER stress and the resulting autophagic flux dysfunction contribute to fluoride-induced neurotoxicity Texte intégral
2018
Niu, Qiang | Chen, Jingwen | Xia, Tao | Li, Pei | Zhou, Guoyu | Xu, Chunyan | Zhao, Qian | Dong, Lixin | Zhang, Shun | Wang, Aiguo
Fluoride is capable of inducing neurotoxicity, but its mechanisms remain elusive. This study aimed to explore the roles of endoplasmic reticulum (ER) stress and autophagy in sodium fluoride (NaF)-induced neurotoxicity, focusing on the regulating role of ER stress in autophagy. The in vivo results demonstrated that NaF exposure impaired the learning and memory capabilities of rats, and resulted in histological and ultrastructural abnormalities in rat hippocampus. Moreover, NaF exposure induced excessive ER stress and associated apoptosis, as manifested by elevated IRE1α, GRP78, cleaved caspase-12 and cleaved-caspase-3, as well as defective autophagy, as shown by increased Beclin1, LC3-II and p62 expression in hippocampus. Consistently, the in vitro results further verified the findings of in vivo study that NaF induced excessive ER stress and defective autophagy in SH-SY5Y cells. Notably, inhibition of autophagy in NaF-treated SH-SY5Y cells with Wortmannin or Chloroquine decreased, while induction of autophagy by Rapamycin increased the cell viability. These results were correlated well with the immunofluorescence observations, thus confirming the pivotal role of autophagic flux dysfunction in NaF-induced cell death. Importantly, mitigation of ER stress by 4-phenylbutyrate in NaF-treated SH-SY5Y cells inhibited the expressions of autophagy markers, and decreased cell apoptosis. Taken together, these data suggest that neuronal death resulted from excessive ER stress and autophagic flux dysfunction contributes to fluoride-elicited neurotoxicity. Moreover, the autophagic flux dysfunction was mediated by excessive ER stress, which provided novel insight into a better understanding of fluoride-induced neurotoxicity.
Afficher plus [+] Moins [-]Occurrence and profile of organophosphorus compounds in fine and coarse particulate matter from two urban areas of China and Pakistan Texte intégral
2018
Faiz, Yasir | Siddique, Naila | He, Huan | Sun, Cheng | Waheed, Shahida
Seven organophosphorus compounds (OPs) were measured in urban fine and coarse particulate matter (PM) collected from two sites of Nanjing (XCNUC), China and Islamabad (APHSP), Pakistan. The fine PM mass at APHSP site was significantly higher (p = 0.005) in the spring (mean 22.5 μg/m³) than in the summer (mean 12.7 μg/m³). The total concentration, ∑⁷OPs, of samples collected at APHSP was found significantly higher in coarse (range 672–47621 pg/m³) than in fine PM (range 1200–15213 pg/m³); while ∑⁷OPs from XCNUC in fine (range 1696–15063 pg/m³) and coarse PM (range 2053–5379 pg/m³) were statistically different in samples during summer, based on two-sample t-test at 0.05 confidence interval. Seasonally, ∑⁷OPs was found to be higher in the samples of Nanjing (9510 ± 3633 pg/m³) in the summer than in the spring. In contrast, the samples of Islamabad had higher ∑⁷OPs (25558 ± 16255 pg/m³) in the spring than in the summer. Tri(chloropropyl) phosphate (TCEP) was found at higher concentration than any other OPs in the samples from the XCNUC site. Triphenyl phosphate (TPhP) was found at extremely high levels from APHSP, which may attributed to its use in jet fuel. Most of the ∑OPs concentrations were found significantly different in both PMs at both sites due to their diverse sources. Both sites showed strong correlation of ∑OPs with TCEP in both PMs, indicating similar mode of transfer from sources like plastics, lacquer, paint, glue, industrial processes and foam fillers. Relative abundance of OPs in fine and coarse PM differs amongst OP congeners and concerning seasons, with these variations attributed to different mechanisms of mass transfer such as volatilization, condensation and abrasions. Moreover, triphenylphosphine oxide (TPPO) has been reported in outdoor PMs. This is the first study on the occurrence of OPs in atmospheric fine and coarse PM and their seasonal variation from Pakistan and China.
Afficher plus [+] Moins [-]Evaluation of acute and chronic ecotoxicity of cyclophosphamide, ifosfamide, their metabolites/transformation products and UV treated samples Texte intégral
2018
Russo, Chiara | Lavorgna, Margherita | Česen, Marjeta | Kosjek, Tina | Heath, Ester | Isidori, Marina
Cyclophosphamide (CP) and Ifosfamide (IF) are two nitrogen mustard drugs widely prescribed in cancer therapy. They are continuously released via excreta into hospital and urban wastewaters reaching wastewater treatment plants. Although CP and IF, their metabolites and transformation products (TPs) residues have been found in the aquatic environment from few ng L⁻¹ to tens of μg L⁻¹, their environmental toxic effects are still not well known. The present study aimed to investigate the acute and chronic ecotoxicity of CP and IF and their commercially available human metabolites/TPs, i.e. carboxy-CP, Keto-CP and N-dechloroethyl-CP on different organisms of the aquatic trophic chain. The experiments were performed using the green alga Pseudokirchneriella subcapitata, the rotifer Brachionus calyciflorus and the crustaceans Thamnocephalus platyurus and Ceriodaphnia dubia. Moreover, to assess the treatment conditions in regards to parent compound removal and formation of new TPs, CP and IF were UV- irradiated for 6 h, 12 h, 24 h, 36 h and 48 h, followed by toxicity evaluation of treated samples by algae, rotifers and crustaceans. Between the parent compounds, IF resulted as more toxic drug under tested conditions, exerting both acute and chronic effects especially on C. dubia (LC50:196.4 mg L⁻¹, EC50:15.84 mg L⁻¹). Among the tested metabolites/TPs, only carboxy-CP inhibited the reproduction in the rotifer. However, LOEC and NOEC values were calculated for CP and IF for all organisms. In addition, despite a low degradation of CP (28%) and IF (36%) after 48 h UV-irradiation, statistically significant effect differences (p < 0.05) from not-irradiated and irradiated samples were observed in both acute and chronic assays, starting from 6 h UV-irradiation. Our results suggest that the toxic effects found in the aquatic organisms may be attributable to interactions between the parent compounds and their metabolites/TPs.
Afficher plus [+] Moins [-]Spatiotemporal variations in macrofaunal assemblages linked to site-specific environmental factors in two contrasting nearshore habitats Texte intégral
2018
Bae, Hanna | Lee, Jung-Ho | Song, Sung Joon | Ryu, Jongseong | Noh, Junsung | Kwon, Bong-Oh | Choi, Kyungsik | Khim, Jong Seong
A long-term study on a benthic community was conducted in two different localities, one in semi-enclosed bay of Jinhae (n = 10, south coast) and the other in open sea area of Samcheok (n = 10, east coast), Korea, respectively. We aimed to identify the spatiotemporal patterns of macrozoobenthos and the environmental variables influencing such patterns in the two contrasting habitats. The macrozoobenthos assemblages on the soft bottom of the subtidal zone were analyzed over the 3 years, encompassing 12 consecutive seasons, in 2013–2016. Among the 22 environmental variables measured, organic matter, dissolved oxygen, mean grain size, and water depth showed clear differences between two study areas. Accordingly, several ecological indices (such as the number of species, abundance, dominant species, and diversity index (H’)) generally reflected site-specific benthic conditions. The macrofaunal community in the Jinhae showed typical seasonal fluctuations, whereas the Samcheok community showed no significant change over time and space. Region- or site-dependent temporal variabilities of macrofaunal assemblages are depicted through cluster analysis (CA), indicating distinct temporal changes in the composition of dominant species. In particular, the abundance of some dominant species noticeably declined in certain seasons when several opportunistic species peaked. Such faunal succession might be explained by significant changes to specific environmental factors, such as bottom dissolved oxygen, grain size, and water depth. Principle component analysis further identified major environmental factors, i.e., sediment properties in Jinhae and water quality parameters in Samcheok community, respectively. In addition, discriminant analysis confirmed the presence of several site-specific parameters for the faunal assemblage groups identified through CA. Finally, indicator value analysis identified species that were representative across stations and regions in accordance with their habitat preference and/or species tolerance. Overall, the two contrasting nearshore habitats showed distinct community differences, in time and space, that were influenced by site-dependent environmental conditions.
Afficher plus [+] Moins [-]Molecular oxidative stress markers in olive ridley turtles (Lepidochelys olivacea) and their relation to metal concentrations in wild populations Texte intégral
2018
Cortés-Gómez, Adriana A. | Morcillo, Patricia | Guardiola, Francisco A. | Espinosa, Cristobal | Esteban, María A. | Cuesta Arranz, Alberto | Girondot, Marc | Romero, Diego
Due to their longevity and extensive migration areas, marine turtles are able to accumulate diverse contaminants over many years and as a consequence they represent an interesting bioindicator species for marine ecosystem pollution. Metals provoke toxicological effects in many aquatic animal species, but marine turtles have been under-investigated in this area. Thus, we have determined the presence of certain inorganic elements (As, Cd, Cu, Ni, Pb, Se and Zn) in olive ridley turtles (Lepidochelys olivacea) and related them to metallothionein (MT), superoxide dismutase (SOD), catalase (CAT) and glutathione reductase (GR) transcription and/or enzymatic activities. Gene expression of sod, cat and gr was found to be higher in blood than liver or kidney but most of the significant relationships were found in liver, not only for gene expression but also for enzyme activities. This must be related to the role the liver has as the first filter organ. Several positive relationships of sod, cat and gr gene expression in the different tissues were found in this population, as well as very high Cd concentrations. This could mean that these turtles are adapting to the metals-production of ROS and damage through a high transcription of these antioxidants. Multiple positive relationships with GR seem to be part of its compensatory effect due to the decrease of SOD production against the high and chronic exposure to certain xenobiotics. CAT, on the other hand, seems not to be used much, and glutathione detoxification of H₂O₂ may be more important in this species. Finally, despite the very high Cd concentrations found in this population, no significant relationship was found in any tissue with metallothionein gene expression. These results, along with very high Cd concentrations and a negative relationship with Cu, lead us to consider some kind of disruption in mt gene expression in these turtles.
Afficher plus [+] Moins [-]Bisphenol AP is anti-estrogenic and may cause adverse effects at low doses relevant to human exposure Texte intégral
2018
Xiao, Xuan | Li, Junyu | Yu, Tong | Zhou, Lei | Fan, Xiaolin | Xiao, Han | Wang, Yue | Yang, Lei | Lv, Junhui | Jia, Xiaojing | Zhang, Zhaobin
A recent increase in the use of bisphenol A (BPA) alternatives to manufacture plastics has led to safety concerns. Here, we evaluated the estrogenic and anti-estrogenic activities of bisphenol AP (BPAP), a poorly studied BPA alternative, using in vitro, in vivo and in silico tools. BPAP exhibited weak estrogenicity but strong anti-estrogenicity (IC₅₀ = 2.35 μM) in a GeneBLAzer™ β-lactamase reporter gene assay. BPAP, when administered alone or in combination with E₂ (50 μg kg⁻¹ bw d⁻¹) for 3 d, significantly decreased the uterine weights of post-weaning CD-1 mice at doses of 10 mg kg⁻¹ bw d⁻¹ and higher. When administered alone to prepubertal CD-1 mice for 10 d, BPAP significantly decreased the uterine weights at doses of 80 μg kg⁻¹ bw d⁻¹ and higher. Toxicogenomic analysis showed that BPAP regulated an opposite patterns of gene expression than that of E₂ in mouse uteri. In a glucose tolerance test using male mice, BPAP was found to disrupt the blood glucose homeostasis at low doses relevant to human exposure (1 and 100 μg kg⁻¹ bw d⁻¹). Our results suggest that BPAP should be of great concern which might affect the sexual development in immature feminine and disrupt the blood glucose homeostasis at very low doses.
Afficher plus [+] Moins [-]Parasite susceptibility in an amphibian host is modified by salinization and predators Texte intégral
2018
Buss, Nicholas | Hua, Jessica
Secondary salinization represents a global threat to freshwater ecosystems. Salts, such as NaCl, can be toxic to freshwater organisms and may also modify the outcome of species interactions (e.g. host-parasite interactions). In nature, hosts and their parasites are embedded in complex communities where they face anthropogenic and biotic (i.e. predators) stressors that influence host-parasite interactions. As human populations grow, considering how anthropogenic and natural stressors interact to shape host-parasite interactions will become increasingly important. We conducted two experiments investigating: (1) the effects of NaCl on tadpole susceptibility to trematodes and (2) whether density- and trait-mediated effects of a parasite-predator (i.e. damselfly) and a host-predator (i.e. dragonfly), respectively, modify the effects of NaCl on susceptibility to trematode infection. In the first experiment, we exposed tadpoles to three concentrations of NaCl and measured parasite infection in tadpoles. In the second experiment, we conducted a 2 (tadpoles exposed to 0 g L−1 NaCl vs. 1 g L−1 NaCl) x 4 (no predator, free-ranging parasite-predator (damselfly), non-lethal host-predator (dragonfly kairomone), and free-ranging parasite-predator + dragonfly kairomone) factorial experiment. In the absence of predators, exposure to NaCl increased parasite infection. Of the predator treatments, NaCl only caused an increase in parasite infection in the presence of the parasite-predator. However, direct consumption of trematodes caused a reduction in overall infection in the parasite-predator treatment. In the dragonfly kairomone treatment, a reduction in tadpole movement (i.e. trematode avoidance behavior) led to an increase in overall infection. In the parasite-predator + dragonfly kairomone treatment, antagonistic effects of the parasite-predator (reduction in trematode abundance) and dragonfly kairomone (reduction in parasite avoidance behavior) resulted in intermediate parasite infection. Collectively, these findings demonstrate that NaCl can increase amphibian susceptibility to parasites, and underscores the importance of considering predator-mediated interactions in understanding how contaminants influence host-parasite interactions.
Afficher plus [+] Moins [-]