Affiner votre recherche
Résultats 511-520 de 4,308
Chlorinated pesticides and natural brominated anisoles in air at three northern Baltic stations Texte intégral
2017
Bidleman, Terry F. | Laudon, Hjalmar | Nygren, Olle | Svanberg, Staffan | Tysklind, Mats
Polyurethane foam (PUF) disk passive samplers were deployed at one inland and two island locations in the Bothnian Bay region of the northern Baltic Sea. Uptake was linear over 81–147 d and a temperature range of −2.6 to 14.2 °C for organochlorine pesticides (OCPs) and current-use pesticides (CUPs) having log KOA ≥9 at ambient temperatures. Partial saturation of the PUF disks occurred for the more volatile OCPs hexachlorocyclohexanes (HCHs) and hexachlorobenzene (HCB), and for bromoanisoles (BAs), which are products of bromophenols released by natural and anthropogenic sources. Correction for nonlinear uptake of these was made using experimentally measured PUF-air partition coefficients. Passive-derived air concentrations of pesticides were uniform over the bay and agreed within a factor of 2 or better with levels determined by active (pumped) sampling at one of the island stations. Levels of OCPs were similar to those reported at background sites in the European and Canadian Arctic and at monitoring stations in the central Baltic and southern Scandinavia, indicating long-range transport. The insecticide chlorpyrifos was 10 times lower at bay stations than in the Canadian Arctic. Insight to sources and processes was gained by examining compound profiles. Fractions Falpha = α-HCH/(α-HCH + γ-HCH) and FTC = trans-chlordane/(trans-chlordane + cis-chlordane) at bay stations were higher than in the Norwegian and Finnish Arctic and similar to those at the southern monitoring stations. Volatilization of chlordanes from Baltic seawater may also modify FTC. Higher FTriBA = 2,4,6-TriBA/(2,4,6-TriBA + 2,4-DiBA) distinguished local volatilization from the Baltic Sea versus lower FTriBA found at the inland site and reported in air on the Norwegian coast, suggesting westerly transport from the Atlantic across Norway and Sweden.
Afficher plus [+] Moins [-]Anthropogenic mercury emissions from 1980 to 2012 in China Texte intégral
2017
Huang, Ying | Deng, Meihua | Li, Tingqiang | Japenga, Jan | Chen, Qianqian | Yang, Xiaoe | He, Zhenli
China was considered the biggest contributor for airborne mercury in the world but the amount of mercury emission in effluents and solid wastes has not been documented. In this study, total national and regional mercury emission to the environment via exhaust gases, effluents and solid wastes were accounted with updated emission factors and the amount of goods produced and/or consumed. The national mercury emission in China increased from 448 to 2151 tons during the 1980–2012 period. Nearly all of the emissions were ended up as exhaust gases and solid wastes. The proportion of exhaust gases decreased with increasing share of solid wastes and effluents. Of all the anthropogenic sources, coal was the most important contributor in quantity, followed by mercury mining, gold smelting, nonferrous smelting, iron steel production, domestic wastes, and cement production, with accounting for more than 90% of the total emission. There was a big variation of regional cumulative mercury emission during 1980–2012 in China, with higher emissions occurred in eastern areas and lower values in the western and far northern regions. The biggest cumulative emission occurred in GZ (Guizhou), reaching 3974 t, while the smallest cumulative emission was lower than 10 t in XZ (Tibet). Correspondingly, mercury accumulation in soil were higher in regions with larger emissions in unit area. Therefore, it is urgent to reduce anthropogenic mercury emission and subsequent impact on ecological functions and human health.
Afficher plus [+] Moins [-]Effect of pH, temperature, humic acid and coexisting anions on reduction of Cr(Ⅵ) in the soil leachate by nZVI/Ni bimetal material Texte intégral
2017
Zhu, Fang | Li, Luwei | Ren, Wentao | Deng, Xiaoqiang | Liu, Tao
Nano zero valent iron/Ni bimetal materials (nZVI/Ni) were prepared by borohydride reduction method to remediate toxic Cr(Ⅵ) contaminated in soil leachate. nZVI/Ni was characterized using scanning electron microscopy (SEM), X-ray diffraction (XRD) and X-ray Photoelectron Spectroscopy (XPS). Different factors including pH value of soil leachate, reaction time, temperature, humic acid and coexisting anions (SO42-, NO3−, HCO3−, CO32-) were studied to analyze the reduction rate. Results showed that the reduction rate of Cr(Ⅵ) could reach 99.84% under the condition of pH of 5 and temperature of 303 K. pH values and temperature of soil leachate had a significant effect on the reduction efficiency, while humic acid had inhibition effect for the reduction reaction. SO42-, HCO3− and CO32- had inhibition effect for reduction rate, while NO3− barely influenced the reduction process of nZVI/Ni. Moreover, Langumir-Hinshelwood first order kinetic model was studied and could describe the reduction process well. The thermodynamic studies indicated that the reaction process was endothermic and spontaneous. Activation energy was 143.80 kJ mol−1, showing that the reaction occurred easily. Therefore, the study provides an idea for nZVI/Ni further research and practical application of nZVI/Ni in soil remediation.
Afficher plus [+] Moins [-]Dissipation, occurrence and risk assessment of a phenylurea herbicide tebuthiuron in sugarcane and aquatic ecosystems in South China Texte intégral
2017
Qian, Yuan | Matsumoto, Haruna | Liu, Xiaoyu | Li, Shuying | Liang, Xiao | Liu, Yanan | Zhu, Guonian | Wang, Mengcen
In this study, a modified QuEChERS (Quick, Easy, Cheap, Effective, Rugged and Safe) method coupled with UPLC-QqQ-MS/MS analysis was developed to detect tebuthiuron in sugarcane fields and the surrounding aquatic ecosystems. Methodological validation showed the method developed was of favorable sensitivity, reproducibility and accuracy. For assessment of its dietary and ecological risks, dissipation and occurrence of tebuthiuron in situ were further investigated through a supervised field trial and an aquatic environment monitoring carried out in six dominant sugarcane production regions in South China. After application at the range of recommended dose, tebuthiuron dominantly distributed in soil, and then dissipated in accordance with the first-order rate model with the half-lives of 12.2–21.5 d. At pre-harvest intervals (PHI), occurrence of tebuthiuron was found to be 0.718–1.366 mg/kg and 0.016–0.034 mg/kg, in sugarcane and soil, respectively. The supervised trials median residue (STMR) of tebuthiuron in sugarcane was thus 0.024 mg/kg and the dietary Risk Quotient (RQd) was accordingly calculated as 2.34 × 10−4, indicating safety on long-term consumption of sugarcane with tebuthiuron residues. Yet high risks of tebuthiuron towards soil ecosystems was noticed as it possessed maximum ecological Risk Quotient (RQe) at 1.97 to earthworms. In sugarcane field-surrounding aquatic environment, distribution of tebuthiuron was found to range from 0.007 mg/L to 0.022 mg/L, leading to high risk towards the aquatic ecosystem due to the maximum RQe at 440 to algae, irrespective of its low risks to invertebrate and fish. Taken together, our approach serve as an effective tool for monitoring residual tebuthiuron environmentally and also advance in-depth understanding of dietary and ecological risks posed by the phenylurea herbicide.
Afficher plus [+] Moins [-]Dose-dependent effects of morphine on lipopolysaccharide (LPS)-induced inflammation, and involvement of multixenobiotic resistance (MXR) transporters in LPS efflux in teleost fish Texte intégral
2017
Mottaz, Hélène | Schönenberger, Rene | Fischer, Stephan | Eggen, Rik I.L. | Schirmer, Kristin | Groh, Ksenia J.
Opioid drugs, such as morphine (MO), detected in aquatic environments worldwide, may harm fish due to their semi-persistence and ability to potently interact with molecular targets conserved across vertebrates. Here, we established a waterborne bacterial lipopolysaccharide (LPS) challenge assay with zebrafish embryos as a model to investigate chemically-induced disruption of the innate immune system, and used it to study the effects of MO exposure. Exposure to 1 mg/L MO resulted in pronounced immunosuppression, reflected in downregulation of several inflammation-related genes, including myd88, trif, traf6, p38, nfκb2, il-1β, il-8 and ccl34a. Fish exposed to 1 mg/L MO accumulated 11.7 ng/g (wet weight) of MO, a concentration comparable to that reported in blood of chronic drug abusers subject to higher infection rates. Surprisingly, exposure to lower MO concentrations (100 ng/L–100 μg/L) led to exacerbation of LPS-induced inflammation. Two ATP-binding cassette (ABC) transporters known to be involved in the xenobiotic efflux - abcb4 and abcc2, also known as multixenobiotic resistance (MXR) transporters - were downregulated at 100 ng/L MO. We hypothesized that ABC/MXR transporters could modulate the severity of inflammation by being involved in efflux of LPS, thus regulating its accumulation in the organism. Indeed, we could demonstrate that blocking of ABC/MXR transporters by an inhibitor, cyclosporine A, results in stronger inflammation, coinciding with higher LPS accumulation, as visualized with fluorescently labeled LPS. Our work demonstrates that MO can disrupt fish innate immune responses at environmentally relevant concentrations. We also provide evidence for a role of ABC/MXR transporters in LPS efflux in fish. These finding may be applicable across other taxa, as ABC transporters are evolutionary conserved. Since diverse environmentally present chemicals are known to interfere with ABC/MXR transporters' expression or activity, our discovery raises concerns about potential adverse effects of such compounds on the immune system responses in aquatic organisms.
Afficher plus [+] Moins [-]Fluoride concentrations in traditional and herbal teas: Health risk assessment Texte intégral
2017
Das, Suchismita | de Oliveira, Letuzia M. | da Silva, Evandro | Liu, Yungen | Ma, Lena Q.
Traditional tea (Camellia sinensis) and herbal tea are being consumed across the world. However, long term consumption of tea can increase the chances of fluorosis owing to the presence of fluoride (F) in teas. Therefore, it is imperative to assess the health risk associated with tea consumption. The main objectives of this study were to: 1) estimate total F in 47 popular teas, including traditional and herbal teas and F concentrations in 1% (w/v) infusion of 5 min, and 2) assess the exposure risks of F from tea consumption in children and adults. The data showed that total F was the least in herbal teas (33–102 mg/kg) and their infusions (0.06–0.69 mg/L) compared to traditional teas (296–1112 mg/kg) and their infusions (1.47–6.9 mg/L). During tea infusion, 6–96% and 18–99% of the F was released into the water from herbal and traditional teas, respectively. Ten samples of traditional teas, including five green teas had chronic daily intake (CDI) values of F > 0.05 mg/d/kg bw, the stipulated permissible limits of F intake from all sources. Although the F from teas posed no immediate health hazards with hazard quotient <1, some tea samples could potentially contribute >4 mg F/d, thereby adding to the overall F burden. Therefore, together with F from food and water sources, daily F consumptions from teas might increase its health risks to humans. So, caution should be excised when drinking teas containing high F.
Afficher plus [+] Moins [-]Health burden attributable to ambient PM2.5 in China Texte intégral
2017
Song, Congbo | He, Jianjun | Wu, Lin | Jin, Taosheng | Chen, Xi | Li, Ruipeng | Ren, Peipei | Zhang, Li | Mao, Hongjun
In China, over 1.3 billion people have high health risks associated with exposure to ambient fine particulate matter (PM2.5) that exceeds the World Health Organization (WHO) Air Quality Guidelines (AQG). The PM2.5 mass concentrations from 1382 national air quality monitoring stations in 367 cities, between January 2014 and December 2016, were analyzed to estimate the health burden attributable to ambient PM2.5 across China. The integrated exposure-response model was applied to estimate the relative risks of disease-specific mortality. Disease-specific mortality baselines in province-level administrative units were adjusted by the national mortality baseline to better reveal the spatial inequality of the health burden associated with PM2.5. Our study suggested that PM2.5 in 2015 contributed as much as 40.3% to total stroke deaths, 33.1% to acute lower respiratory infection (ALRI, <5yr) deaths, 26.8% to ischemic heart disease (IHD) deaths, 23.9% to lung cancer (LC) deaths, 18.7% to chronic obstructive pulmonary disease (COPD) deaths, 30.2% to total deaths combining IHD, stroke, COPD, and LC, 15.5% to all cause deaths. The population weighted average (PWA) attributable mortality rates (10−5 y−1) were 112.0 in current year analysis, and 124.3 in 10-year time lag analysis. The Mortality attributable to PM2.5 in 10-year time lag analysis (1.7 million) was 12% higher than the current year analysis (1.5 million). Our study also estimated site-specific annual PM2.5 concentrations in scenarios of achieving WHO interim targets (ITs) and AQG. The mortality benefits will be 24.0%, 44.8%, 70.8%, and 85.2% of the total current mortalities (1.5 million) when the PWA PM2.5 concentrations in China meets the WHO IT-1, IT-2, IT-3, and AQG, respectively. We expect air quality modeling and cost-benefits analysis of emission reduction scenarios and corresponding health benefits in meeting the site-specific annual PM2.5 concentrations (WHO IT-1, IT-2, IT-3, and AQG) this study raised.
Afficher plus [+] Moins [-]Antimony as a global dilemma: Geochemistry, mobility, fate and transport Texte intégral
2017
Herath, Indika | Vithanage, Meththika | Bundschuh, Jochen
Elevated concentrations of antimony (Sb) in environmental, biological and geochemical systems originating from natural, geological and anthropogenic sources are of particular global concern. This review presents a critical overview of natural geochemical processes which trigger the mobilization of Sb from its host mineral phases and related rocks to the surrounding environments. The primary source of Sb contamination in the environment is geogenic. The geochemical characteristics of Sb are determined by its oxidation states, speciation and redox transformation. Oxidative dissolution of sulfide minerals and aqueous dissolution are the most prevalent geochemical mechanisms for the release of Sb to the environment. Transformation of mobile forms of Sb is predominantly controlled by naturally occurring precipitation and adsorption processes. Oxyhydroxides of iron, manganese and aluminum minerals have been recognized as naturally occurring Sb sequestrating agents in the environment. Antimony is also immobilized in the natural environment via precipitation with alkali and heavy metals resulting extremely stable mineral phases, such as schafarzikite, tripuhyite and calcium antimonates. Many key aspects, including detection, quantification, and speciation of Sb in different environmental systems as well as its actual human exposure remain poorly understood. Identification of global distribution of most vulnerable Sb-contaminated regions/countries along with aquifer sediments is an urgent necessity for the installation of safe drinking water wells. Such approaches could provide the global population Sb-safe drinking and irrigation water and hinder the propagation of Sb in toxic levels through the food chain. Hence, raising awareness through the mobility, fate and transport of Sb as well as further transdisciplinary research on Sb from global scientific communities will be a crucial stage to establish a sustainable Sb mitigation on a global scale.
Afficher plus [+] Moins [-]Source-oriented risk assessment of inhalation exposure to ambient polycyclic aromatic hydrocarbons and contributions of non-priority isomers in urban Nanjing, a megacity located in Yangtze River Delta, China Texte intégral
2017
Zhuo, Shaojie | Shen, Guofeng | Zhu, Ying | Du, Wei | Pan, Xuelian | Li, Tongchao | Han, Yang | Li, Bengang | Liu, Junfeng | Cheng, Hefa | Xing, Baoshan | Tao, Shu
Sixteen U.S. EPA priority polycyclic aromatic hydrocarbons (PAHs) and eleven non-priority isomers including some dibenzopyrenes were analyzed to evaluate health risk attributable to inhalation exposure to ambient PAHs and contributions of the non-priority PAHs in a megacity Nanjing, east China. The annual average mass concentration of the total 16 EPA priority PAHs in air was 51.1 ± 29.8 ng/m³, comprising up to 93% of the mass concentration of all 27 PAHs, however, the estimated Incremental Lifetime Cancer Risk (ILCR) due to inhalation exposure would be underestimated by 63% on average if only accounting the 16 EPA priority PAHs. The risk would be underestimated by 13% if only particulate PAHs were considered, though gaseous PAHs made up to about 70% of the total mass concentration. During the last fifteen years, ambient Benzo[a]pyrene decreased significantly in the city which was consistent with the declining trend of PAHs emissions. Source contributions to the estimated ILCR were much different from the contributions for the total mass concentration, calling for the introduce of important source-oriented risk assessments. Emissions from gasoline vehicles contributed to 12% of the total mass concentration of 27 PAHs analyzed, but regarding relative contributions to the overall health risk, gasoline vehicle emissions contributed 45% of the calculated ILCR. Dibenzopyrenes were a group of non-priority isomers largely contributing to the calculated ILCR, and vehicle emissions were probably important sources of these high molecular weight isomers. Ambient dibenzo[a,l]pyrene positively correlated with the priority PAH Benzo[g,h,i]perylene. The study indicates that inclusion of non-priority PAHs could be valuable for both PAH source apportionment and health risk assessment.
Afficher plus [+] Moins [-]Evaluation of short-term mortality attributable to particulate matter pollution in Spain Texte intégral
2017
Ortiz, Cristina | Linares, Cristina | Carmona, Rocio | Diaz, Julio
According to the WHO, 3 million deaths are attributable to air pollution due to particulate matter (PM) world-wide. However, there are no specific updated studies which calculate short-term PM-related cause specific mortality in Spain. The objective is to quantify the relative risks (RRs) and attributable risks (ARs) of daily mortality associated with PM10 concentrations, registered in Spanish provinces and to calculate the number of PM-related deaths. We calculated daily mortality due to natural (ICD-10: A00 R99), circulatory (ICD-10: I00 I99) and respiratory causes (ICD-10: J00 J99) for each province across the period 2000–2009. Mean daily concentrations of PM10, NO2 and O3 was used. For the estimate of RRs and ARs, we used generalised linear models with a Poisson link. A meta-analysis was used to estimate RRs and ARs in the provinces with statically significant results. The overall RRs obtained for these provinces, corresponding to increases of 10 μ g/m³ in PM10 concentrations were 1.009 (95% CI: 1.006 1011) for natural, 1.026 (95% CI: 1.019 1033) for respiratory, and 1.009 (95% CI: 1.006 1012) for circulatory-cause mortality. This amounted to an annual overall total of 2683 deaths (95% CI: 852 4354) due to natural, 651 (95% CI: 359 1026) due to respiratory, and 556 (95% CI: 116 1012) due to circulatory causes, with 90% of this mortality lying below the WHO guideline values. This study provides an updated estimate of the effect had by this type of pollutant on causes of mortality, and constitutes an important basis for reinforcing public health measures.
Afficher plus [+] Moins [-]