Affiner votre recherche
Résultats 511-520 de 7,292
Study of the joint action of multi-component mixtures based on parameter σ2(k∙ECx) characterizing the shape difference of concentration-response curves Texte intégral
2022
Wang, Na | Zhang, Jingkun | Ma, Xiaoyan | Zhang, Huanle | Sun, Jiajing | Wang, Xiaochang | Zhou, Jinhong | Wang, Jiaxuan | Ge, Chengmin
A previous study has revealed that the parameter k∙ECₓ, characterizing the shape of concentration-response curves (CRCs), could predict the combined toxicity of binary mixtures. This study further explored the predictability of multi-component mixtures. Eleven component mixtures were designed using the uniform design ray, and the acute toxicity of the eleven environmental pollutants and their mixtures to Vibrio fischeri was determined using microplate toxicity analysis. We used independent action (IA) and the effect residual ratio (ERRₓ) models to evaluate the combined toxicity of multi-component mixtures and ascertain the functional relationship between σ²₍ₖ∙ECₓ₎, a parameter characterizing the CRC morphological difference of multi-component mixtures, and combined toxicity. The variance σ²₍ₖ∙ECₓ₎ of each component characteristic parameter of multi-component mixtures gradually increased in the concentration range, and the relationship between σ²₍ₖ∙ECₓ₎ and ERRₓ was consistent with the exponential function. The literature verification showed that this rule is generally applicable to the acute toxicity of multi-component mixtures to luminescent bacteria. The exponential function showed the variation rule of the joint action of multi-component mixtures. In the present study, the joint toxicity of multi-component mixtures can be predicted from single toxicity and small amount of multiple toxicity, circumventing complex multi-component toxicity experiments.
Afficher plus [+] Moins [-]Microwave-induced steam distillation (MISD) remediation in petroleum hydrocarbon-contaminated sites: From process improvement to pilot application Texte intégral
2022
Xue, Zhenkun | Zuo, Rui | Ding, Fei | Wu, Ziyi | Pan, Minghao | Cai, Weihai | Xu, Yunxiang | Wang, Jinshen
The process improvement, a pilot remediation test and the decontamination mechanism of microwave-induced steam distillation (MISD) for petroleum hydrocarbons (PHs) removal were conducted. Processes of multistage steam distillation and carbon reinforcement were compared to determine the best remediation process. Pilot project was then carried out to explore the applicability of MISD in site-scale remediation. The remediation efficiency, procedures and influencing factors of site-scale MISD project were studied by monitoring variations of soil moisture, temperature and PHs concentrations. Furthermore, the decontamination mechanisms of PHs were clarified based on kinetic analysis. The results showed that the multistage steam distillation could improve 10%∼15% remediation efficiency, and the carbon reinforcement could shorten remediation duration of each steam distillation stage by 50%. Pilot MISD project adopted multistage steam distillation process and went through four (initial, rapid heating-up, gentle heating-up and quasi-equilibrium) remediation stages (overall temperature ≤100 °C). The final PHs removal rate was about 60%, which would get better with greater proportion of low boiling points components and stronger vapor extraction. Kinetic studies showed that PHs was removed by steam stripping and limited by intraparticle diffusion in the “steam distillation zone”, while local high temperature (>100 °C) greatly improved PHs volatilization and provided activation energy for PHs desorbed and degraded in the “selective heating zone".
Afficher plus [+] Moins [-]Effects of Eucalypt ashes from moderate and high severity wildfires on the skin microbiome of the Iberian frog (Rana iberica) Texte intégral
2022
Coelho, Laura | Afonso, Mariana | Jesus, Fátima | Campos, Isabel | Abrantes, Nelson | Gonçalves, Fernando J.M. | Serpa, Dalila | Marques, Sergio M.
Forest fires can threaten amphibians because ash-associated contaminants transported by post-fire runoff impact both terrestrial and aquatic ecosystems. Still, the effects of these contaminants on the skin microbiome of amphibians have been overlooked. Thus, the main objective of this study was to assess the effects of ash from different severity wildfires (moderate and high) on the skin microbiome of the Iberian frog (Rana iberica). Bacterial isolates sampled from R. iberica skin microbiome were tested for their antimicrobial activity against the pathogen Aeromonas salmonicida. The isolates with antimicrobial activity were identified and further exposed to several concentrations (0, 6.25, 12.5, 25, 50, 75, and 100%) of Eucalypt (Eucalyptus globulus) aqueous extracts (AAEs) of ash from both a moderate and a high severity wildfire. The results showed that 53% of the bacterial isolates presented antimicrobial activity, with Pseudomonas being the most common genus. Exposure to AAEs had diverse effects on bacterial growth since a decrease, an increase or no effects on growth were observed. For both ash types, increasing AAEs concentrations led to an increase in the number of bacteria whose growth was negatively affected. Ash from the high severity fire showed more adverse effects on bacterial growth than those from moderate severity, likely due to the higher metal concentrations of the former. This study revealed that bacteria living in Iberian frogs' skin could be impaired by ash-related contaminants, potentially weakening the individual's immune system. Given the foreseen increase in wildfires' frequency and severity under climate change, this work raises awareness of the risks faced by amphibian communities in fire-prone regions, emphasising the importance of a rapid implementation of post-fire emergency measures for the preservation and conservation of this group of animals.
Afficher plus [+] Moins [-]Profiling of multiple classes of flame retardants in house dust in China: Pattern analysis and human exposure assessment Texte intégral
2022
Yan, Mengqi | Zhu, Hongkai | Shi, Yumeng | Xu, Ke | Chen, Shucong | Zou, Qiang | Sun, Hongwen | Kannan, Kurunthachalam
Legacy [e.g., brominated- (BFRs)] and alternative [e.g., organophosphate- (OPFRs) and nitrogenous- (NFRs)] flame retardants have a propensity to migrate out of consumer products, and thus are dispersed in indoor microenvironments. In this study, simultaneous presence of 11 BFRs, 18 OPFRs and 11 NFRs were measured in house dust collected from Tianjin, China. OPFRs were found at the highest concentrations, with a median value of 3200 ng/g, followed by NFRs (2600) and BFRs (1600). Tris(2-butoxyethyl) phosphate (median: 1800 ng/g), melamine (1100), and BDE-209 (870) were the top three most abundant chemicals in the respective groups. Location-specific patterns of flame retardant concentrations were found with 30%, 20% and 10% of samples were predominated by OPFRs, NFRs and BFRs, respectively, and the remaining samples contained by two or more of the chemical groups occurring concurrently. Network and cluster analysis results indicated the existence of multiple sources of flame retardants in the indoor microenvironment. Estimated human daily intakes via indoor dust ingestion were approximately several tens of ng/kg bw/day and were below their respective reference dose values. Our results indicate widespread occurrence of multiple flame retardant families in indoor dust and suggest need for continued monitoring and efforts to reduce exposures through dust ingestion.
Afficher plus [+] Moins [-]Comparison of the efficiency and microbial mechanisms of chemical- and bio-surfactants in remediation of petroleum hydrocarbon Texte intégral
2022
Zhuang, Xuliang | Wang, Yaxin | Wang, Haoyu | Dong, Yuzhu | Li, Xianglong | Wang, Shijie | Fan, Haonan | Wu, Shanghua
Surfactant-enhanced remediation (SER) is one of the most effective methods for petroleum hydrocarbon-contaminated sites compared to single physical and chemical methods. However, biosurfactants are not as commonly used as chemical surfactants, and the actual remediation effects and related mechanisms remain undefined. Therefore, to comprehensively compare the remediation effects and biological mechanisms of biosurfactants and chemical surfactants, soil column leaching experiments including two biosurfactants (rhamnolipids and lipopeptide) and three commercially used chemical surfactants (Tween 80, Triton X-100, and Berol 226SA) were conducted. After seven days of leaching, rhamnolipids exhibited the highest petroleum hydrocarbon removal rate of 61.01%, which was superior to that of chemical surfactants (11.73–18.75%) in n-alkanes C10–C30. Meanwhile, rhamnolipids exhibited a great degradation advantage of n-alkanes C13–C28, which was 1.22–30.55 times that of chemical surfactants. Compared to chemical surfactants, biosurfactants significantly upregulated the soil's biological functions, including soil conductivity (80.90–155.56%), and soil enzyme activities of lipase (90.31–497.10%), dehydrogenase (325.00–655.56%), core enzyme activities of petroleum hydrocarbon degradation, and quorum sensing between species. Biosurfactants significantly changed the composition of Pseudomonas, Citrobacter, Acidobacteriota, and Enterobacter at the genus level. Meanwhile, chemical surfactants had less influence on the bacterial community and interactions between species. Moreover, the biosurfactants enhanced the microbial interactions and centrality of petroleum hydrocarbon degraders in the community based on the network. Overall, this work provides a systematic comparison and understanding of the chemical- and bio-surfactants used in bioremediation. In the future, we intend to apply biosurfactants to practical petroleum hydrocarbon-contaminated fields to observe realistic remediation effects and compare their functional mechanisms.
Afficher plus [+] Moins [-]A miniaturized electrothermal array for rapid analysis of temperature preference behaviors in ecology and ecotoxicology Texte intégral
2022
Henry, Jason | Bai, Yutao | Kreuder, Florian | Saaristo, Minna | Kaslin, Jan | Wlodkowic, Donald
Due to technical limitations, there have been minimal studies performed on thermal preferences and thermotactic behaviors of aquatic ectotherm species commonly used in ecotoxicity testing. In this work, we demonstrate an innovative, purpose-built and miniaturized electrothermal array for rapid thermal preference behavioral tests. We applied the novel platform to define thermal preferences in multiple invertebrate and vertebrate species. Specifically, Dugesia notogaea (freshwater planarians), Chironomus tepperi (nonbiting midge larvae), Ostracoda (seed shrimp), Artemia franciscana (brine shrimp), Daphnia carinata (water flea), Austrochiltonia subtenuis (freshwater amphipod), Physa acuta (freshwater snail), Potamopyrgus antipodarum (New Zealand mud snail) and larval stage of Danio rerio (zebrafish) were tested. The Australian freshwater water fleas, amphipods, snail Physa acuta as well as zebrafish exhibited the most consistent preference to cool zones and clear avoidance of zones >27 °C out of nine species tested. Our results indicate the larval stage of zebrafish as the most responsive species highly suitable for prospective development of multidimensional behavioral test batteries. We also showcase preliminary data that environmentally relevant concentrations of pharmaceutical pollutants such as non-steroidal anti-inflammatory drug (NSAID) ibuprofen (9800 ng/L) and insecticide imidacloprid (4600 ng/L) but not anti-depressant venlafaxine (2200 ng/L) and (iv) anticonvulsant medications gabapentin (400 ng/L) can perturb thermal preference behavior of larval zebrafish. Collectively our results demonstrate the utility of simple and inexpensive thermoelectric technology in rapid exploration of thermal preference in diverse species of aquatic animals. We postulate that more broadly such technologies can also have added value in ecotoxicity testing of emerging contaminants.
Afficher plus [+] Moins [-]Versatile in silico modeling of XAD-air partition coefficients for POPs based on abraham descriptor and temperature Texte intégral
2022
Tao, Cuicui | Chen, Ying | Tao, Tianyun | Cao, Zaizhi | Chen, Wenxuan | Zhu, Tengyi
The concentration of persistent organic pollutants (POPs) makes remarkable difference to environmental fate. In the field of passive sampling, the partition coefficients between polystyrene-divinylbenzene resin (XAD) and air (i.e., KXAD₋A) are indispensable to obtain POPs concentration, and the KXAD₋A is generally thought to be governed by temperature and molecular structure of POPs. However, experimental determination of KXAD₋A is unrealistic for countless and novel chemicals. Herein, the Abraham solute descriptors of poly parameter linear free energy relationship (pp-LFER) and temperature were utilized to develop models, namely pp-LFER-T, for predicting KXAD₋A values. Two linear (MLR and LASSO) and four nonlinear (ANN, SVM, kNN and RF) machine learning algorithms were employed to develop models based on a data set of 307 sample points. For the aforementioned six models, R²ₐdⱼ and Q²ₑₓₜ were both beyond 0.90, indicating distinguished goodness-of-fit and robust generalization ability. By comparing the established models, the best model was observed as the RF model with R²ₐdⱼ = 0.991, Q²ₑₓₜ = 0.935, RMSEₜᵣₐ = 0.271 and RMSEₑₓₜ = 0.868. The mechanism interpretation revealed that the temperature, size of molecules and dipole-type interactions were the predominant factors affecting KXAD₋A values. Concurrently, the developed models with the broad applicability domain provide available tools to fill the experimental data gap for untested chemicals. In addition, the developed models were helpful to preliminarily evaluate the environmental ecological risk and understand the adsorption behavior of POPs between XAD membrane and air.
Afficher plus [+] Moins [-]Exogenous melatonin protects preimplantation embryo development from decabromodiphenyl ethane-induced circadian rhythm disorder and endogenous melatonin reduction Texte intégral
2022
Shi, Feifei | Qiu, Jinyu | Zhang, Shaozhi | Zhao, Xin | Feng, Daofu | Feng, Xizeng
Decabromodiphenyl ethane (DBDPE) is a novel flame retardant that is widely used in plastics, electronic products, building materials and textiles. Our previous studies have revealed the oocyte toxicity of DBDPE, but the effect of DBDPE on preimplantation embryo development has not been reported. Here, we investigated whether and how DBDPE exposure affects preimplantation embryo development. Adult female mice were orally exposed to DBDPE (0, 5, 50, 500 μg/kg bw/day) for 14 days. First, we found that after DBDPE exposure, mice showed obvious circadian rhythm disorder. Moreover, the development of preimplantation embryos was inhibited in DBDPE-exposed mice after pregnancy. Then, we further explored and revealed that DBDPE exposure reduced the endogenous melatonin (MLT) level during pregnancy, thereby inhibiting the development of preimplantation embryos. Furthermore, we discovered that exogenous MLT supplementation (15 mg/kg bw/day) rescued the inhibition of preimplantation embryo development induced by DBDPE, and a mechanistic study demonstrated that exogenous MLT inhibited the overexpression of ROS and DNA methylation at the 5-position of cytosine (5-mC) in DBDPE-exposed preimplantation embryos. Simultaneously, MLT ameliorated the DBDPE-induced mitochondrial dysfunction by increasing the mitochondrial membrane potential (MMP), ATP, and Trp1 expression. Additionally, MLT restored DBDPE-induced changes in zona pellucida (ZP) hardness and trophectoderm (TE) cortical tension. Finally, the protective effect of MLT on embryos ameliorated the adverse reproductive outcomes (dead fetus, fetus with abnormal liver, fetal weight loss) induced by DBDPE. Collectively, DBDPE induced preimplantation embryo damage leading to adverse reproductive outcomes, and MLT has emerged as a potential tool to rescue adverse reproductive outcomes induced by DBDPE.
Afficher plus [+] Moins [-]Transport and partitioning of metals in river networks of a plain area with sedimentary resuspension and implications for downstream lakes Texte intégral
2022
Zhang, Jin | Wang, Kun | Yi, Qitao | Zhang, Tao | Shi, Wenqing | Zhou, Xuefei
This study showed that metal transport and partitioning are primarily controlled by suspended solids with seasonal flow regimes in plain river networks with sedimentary resuspension. Eight metal species containing iron (Fe), manganese (Mn), cadmium (Cd), chrome (Cr), copper (Cu), nickel (Ni), lead (Pb), and zinc (Zn), in multiple phases of sediments, suspended solids (>0.7 μm), colloids (1 nm-0.7 μm) and dissolved phase (<1 nm) were analysed to characterize their temporal-spatial patterns, partitioning and transport on a watershed scale. Metal concentrations were associated with suspended solids in the water column and decreased from low flow to high flow. However, metal partitioning between particulate phase (suspended solids) and dissolvable phases (colloids and dissolved phase) was reversed and increased from low flow to high flow with decreased concentration of total suspended solids and median particle size. Partition coefficients (kₚ) showed differences among metal species, with higher values for Pb (354.3–649.0 L/g) and Cr (54.2–223.7 L/g) and lower values for Zn (2.5–25.2 L/g) and Cd (17.3–21.0 L/g). Metal concentrations in sediments increased by factors of 1.2–3.0 from upstream to downstream in watersheds impacted by urbanization. The behaviours of metals in rivers provide deeper insight into the ecological risks they pose for downstream lakes, where increased redox potential and organic matter may increase metal mobility due to algal blooms. Areas with heavy pollution of metals and the transport routines of metals in the river networks were also revealed in our research.
Afficher plus [+] Moins [-]Mesoscale cycling of organophosphorus flame retardants (OPFRs) in the Bohai Sea and Yellow Sea biotic and abiotic environment: A WRF-CMAQ modeling Texte intégral
2022
Wang, Linfei | Huang, Yufei | Zhang, Xiaodong | Liu, Xinrui | Chen, Kaijie | Jian, Xiaohu | Liu, Junfeng | Gao, Hong | Zhugu, Ruiyu | Ma, Jianmin
Rapid urbanization and industrialization in the eastern seaboard region of China enhance the widespread use of organophosphorus flame retardants (OPFRs). The present study set up a coupled WRF-CMAQ-SMOKE and multi-compartment exchange modeling framework to assess the environmental fate and cycling of OPFRs and their contamination in the Bohai and Yellow Seas' marine food web. The framework predicts meteorological conditions, optimized air emissions, and concentrations of OPFRs in air, seawaters, marine sediment, and the food web. The model was implemented to simulate the temporal and spatial fluctuations of Tris (2-chloroisopropyl) phosphate (TCPP), the most dominant congener of OPFRs in China, in the Bohai and the Yellow Sea ecosystems on a spatial resolution of 10 km. Results revealed the effects of source proximity, atmospheric transport and deposition, and the changes in meteorology on TCPP's temporal-spatial distribution across different areas of coastal waters. The model also captures TCPP levels in commercial fish species in the Bohai Sea. The detailed temporal-spatial characteristics of TCPP with the mesoscale resolution provide useful information and a new tool for the environmental and health consequences of mariculture, urban and industrial emission mitigation in coastal regions for emerging chemicals, and fishery industry development.
Afficher plus [+] Moins [-]