Affiner votre recherche
Résultats 521-530 de 4,241
The effect of oil sands tailings pond sediments on embryo-larval walleye (Sander vitreus)
2017
Raine, J.C. | Turcotte, D. | Tumber, V. | Peru, K.M. | Wang, Z. | Yang, Zhunhe | Headley, J.V. | Parrott, J.L.
Walleye (Sander vitreus) are a commercially important North American fish species that inhabit the Athabasca River. This river flows through the Athabasca oil sands where natural sources of bitumen erode from the McMurray formation. Little information is available on responses of walleye embryos to oil sands tailings pond sediments in a laboratory setting. The current study describes the design and implementation of a daily-renewal bioassay to assess the potential effects of tailings pond sediments from the Athabasca oil sands area on walleye development. Developing walleye embryos were exposed to increasing concentrations of two tailings pond sediments (collected in the Athabasca oil sands area) until the completion of yolk absorption in control fish. Sediments from the tailings pond represent a mixture of polycyclic aromatic hydrocarbons (PAHs) and alkylated PAHs. During the 31 day exposure, the walleye were examined for mortalities, weight, length and developmental abnormalities to provide an initial evaluation of the effects of the oil sands tailings pond sediments. Walleye embryo survival differed between the tailings pond sediments, and survival decreased with increasing sediment concentration. Alkylated PAH content differed between the two tailings pond sediments and lower embryo survival corresponded to higher total and alkylated PAH content. Tailings pond sediment-exposed walleye exhibited a delay in development, as well as increased percentages of larvae with heart and yolk sac edema, and cranial and spinal malformations. These abnormalities in development are often associated with PAH and alkylated PAH exposure. This study provides an exposure design that can be used to assess sediment toxicity to early developmental stages of a fish species not commonly tested in the lab, and lays the groundwork for future studies with this and other difficult-to-culture species. These results offer information on the potential effects of tailings pond sediments containing PAH/alkylated PAH mixtures on walleye development and survival.
Afficher plus [+] Moins [-]Spatial variations in the occurrence of potentially genotoxic disinfection by-products in drinking water distribution systems in China
2017
Li, Chunmei | Wang, Donghong | Xu, Xiong | Xu, Meijia | Wang, Zijian
We investigated the occurrence of disinfection by-products (DBPs) with genotoxic potential in plant effluent and distribution water samples from four drinking water treatment plants in two Chinese cities using comprehensive two-dimensional gas chromatography–quadrupole mass spectrometry. We tested the samples for 37 DBPs with genotoxic potential, which we had previously identified and prioritized in water under controlled laboratory conditions. Thirty of these DBPs were found in the water samples at detection frequencies of between 10% and 100%, and at concentrations between 3.90 and 1.77 × 103 ng/L. Of the DBPs detected, the concentrations of 1,1,1-trichloropropan-2-one were highest, and ranged from 299 to 1.77 × 103 ng/L with an average of 796 ng/L. The concentrations of 6-chloro-2-N-propan-2-yl-1,3,5-triazine-2,4-diamine and 2,6-ditert-butylcyclohexa-2,5-diene-1,4-dione were also much higher, and ranged from 107 to 721 ng/L, and from 152 to 504 ng/L, respectively. Concentrations of 1,1,1-trichloropropan-2-one, 2-chloro-1-phenylethanone, 2,2-dichloro-1-phenylethanone and 6-chloro-2-N-propan-2-yl-1,3,5-triazine-2,4-diamine were highest at or near the treatment plants and decreased with increasing distance from the plants. Patterns in the concentrations of benzaldehyde, 2-phenylpropan-2-ol, and 1-methylnaphthalene differed between plants. The levels of DBPs such as 4-ethylbenzaldehyde, (E)-non-2-enal, and 1-phenylethanone were relatively constant within the distribution systems, even at the furthest sampling points (20 km < d < 30 km). A risk assessment showed that there was no risk to human health. It is, however, important to note that, because of limited availability of toxicity data, only five DBPs were evaluated in this study. The risks to health associated with exposure to the target potentially genotoxic DBPs should not be ignored because of their prolonged existence in drinking water.
Afficher plus [+] Moins [-]Solar radiation and out-of-hospital cardiac arrest in Japan
2017
Onozuka, Daisuke | Hagihara, Akihito
Although several studies have estimated the effects of temperature on mortality and morbidity, little is known regarding the burden of out-of-hospital cardiac arrest (OHCA) attributable to solar radiation.We obtained data for all cases of OHCA and meteorological data reported between 2011 and 2014 in 3 Japanese prefectures: Hokkaido, Ibaraki, and Fukuoka. We first examined the relationship between daily solar radiation and OHCA risk for each prefecture using time-varying distributed lag non-linear models and then pooled the results in a multivariate random-effects meta-analysis. The attributable fractions of OHCA were calculated for low and high solar radiation, defined as solar radiation below and above the minimum morbidity solar radiation, respectively. The minimum morbidity solar radiation was defined as the specific solar radiation associated with the lowest morbidity risk.A total of 49,892 cases of OHCA occurred during the study period. The minimum morbidity solar radiation for each prefecture was the 100th percentile (72.5 MJ/m2) in Hokkaido, the 83rd percentile (59.7 MJ/m2) in Ibaraki, and the 70th percentile (53.8 MJ/m2) in Fukuoka. Overall, 20.00% (95% empirical confidence interval [eCI]: 10.97–27.04) of the OHCA cases were attributable to daily solar radiation. The attributable fraction for low solar radiation was 19.50% (95% eCI: 10.00–26.92), whereas that for high solar radiation was 0.50% (95% eCI: −0.07–1.01).Low solar radiation was associated with a substantial attributable risk for OHCA. Our findings suggest that public health efforts to reduce OHCA burden should consider the solar radiation level. Large prospective studies with longitudinal collection of individual data is required to more conclusively assess the impact of solar radiation on OHCA.
Afficher plus [+] Moins [-]Transgenerational endocrine disruption and neurotoxicity in zebrafish larvae after parental exposure to binary mixtures of decabromodiphenyl ether (BDE-209) and lead
2017
Chen, Lianguo | Wang, Xianfeng | Zhang, Xiaohua | Lam, Paul K.S. | Guo, Yongyong | Lam, James C.W. | Zhou, Bingsheng
Polybrominated diphenyl ethers (PBDEs) and heavy metals are two key groups of electric and electronic equipment contaminants. Despite their co-occurrence in aquatic environments, their combined effects remain largely unknown, particularly under a chronic exposure regime. In the present study, adult zebrafish (Danio rerio) were exposed to environmentally relevant concentrations of BDE-209 and lead (Pb), or their binary mixtures, for 3 months. After chronic parental exposure, increased transfer of BDE-209 and Pb to the offspring eggs was activated in the coexposure groups, with BDE-197 being the predominant PBDE congener, indicating the dynamic metabolism of BDE-209 in parental zebrafish. In the presence of Pb, culturing the eggs in clean water until 5 days post-fertilization (dpf) further accelerated the debromination of BDE-209 towards BDE-197 in the offspring, caused by the preferential removal of bromine atoms at meta positions. BDE-209 and Pb combinations induced reproductive and thyroid endocrine disruption in adults, which resulted in an imbalanced deposition of hormones in the eggs. However, compared with single chemical exposure, the larval offspring at 5 dpf from the coexposure groups had reversed the adverse influences from maternal origin. In addition, the interaction between BDE-209 and Pb led to transgenerational developmental neurotoxicity in the larval offspring, where inhibited neuronal growth and neurotransmitter signaling, disorganized muscular assembly, and impaired visual function contributed to the observed neurobehavioral deficits. Overall, depending on specific biological events, the complex interaction between BDE-209 and Pb under chronic exposure resulted in significant alterations in their environmental fate and toxicological actions, thus complicating the accurate evaluation of ecological risks and constituting an unquantified threat to environmental safety.
Afficher plus [+] Moins [-]Lead accumulation (adsorption and absorption) by the freshwater bivalve Corbicula fluminea in sediments contaminated by TiO2 nanoparticles
2017
Fan, Xiulei | Wang, Peifang | Wang, Chao | Hu, Bin | Wang, Xun
With the increasing production and applications of TiO2 nanoparticles (NPs), their presence in aquatic environments, especially in sediments, will inevitably increase over time. Most studies investigating the influence of TiO2 NPs on the bioaccumulation of co-existing contaminants have focused on the aqueous phase; however, few have examined the sediment phase, which contains more TiO2 NPs and contaminants. We investigated the effects of TiO2 NPs on Pb accumulation by Corbicula fluminea in sediments, and explored extracellular and intracellular Pb concentrations in the various soft tissues of the bivalve. Pb was spiked with 50 mg/kg in sediment and TiO2 NPs/sediments ratios were within the range 0.2–3.0%. The results showed that TiO2 NPs presented larger adsorption capacity and affinity to Pb ions than the sediments. In addition, the large adsorption capacity of TiO2 NPs and the strong adsorption affinity to Pb ions caused part of the Pb ions released from sediments to aqueous phase were re-adsorbed by TiO2 NPs in sediments. The concentration of TiO2 NPs in C. fluminea tissues significantly increased with increasing TiO2 NP content in sediments, following the order: gill > mantle > foot > visceral mass, which differed from the results found in the aqueous phase. In addition, the proportions of extracellular and intracellular Pb concentrations changed significantly in all the tissues as a result of TiO2 NP contamination of sediments. TiO2 NPs promote increased extracellular Pb in foot, mantle, and gill tissues, and increased intracellular Pb in the visceral mass. These results may be beneficial to more scientifically evaluate and predict the environmental risks of TiO2 NPs to benthic organisms in sediments contaminated by heavy metals.
Afficher plus [+] Moins [-]Body burden of heavy metals among HIV high risk population in USA
2017
HIV high risk population may face not only the threat of HIV infection but also a higher chance of exposure to environmental contaminants. However, no previous studies have examined the body burden of environmental pollutants including heavy metals among HIV high risk populations. The aim of this study was to investigate whether adults aged 20–59 years old at high risk of HIV infection have higher blood levels of heavy metals compared to those with low risk of HIV infection in United States.We used the National Health and Nutrition Examination Survey (NHANES) 1999–2010 to compare exposures to heavy metals including cadmium, lead, and total mercury by HIV risk status.The results showed that people at high risk of HIV had higher blood concentrations of all heavy metals compared to their counterparts with lower HIV risks. In multivariate linear regression models, HIV risk status was significantly associated with increased blood cadmium, lead, and total mercury after adjusting for age, sex, race, education, and poverty income ratio.Our study suggests that people at high risk of HIV have significantly higher body burden of heavy metals including cadmium, lead, and mercury compared to those with low risk of HIV. Further longitudinal study collecting more pollutants are warranted to determine the potential health effects of these elevated pollutants on both HIV-infected and HIV high-risk populations.
Afficher plus [+] Moins [-]Seasonal variation, spatial distribution and source apportionment for polycyclic aromatic hydrocarbons (PAHs) at nineteen communities in Xi'an, China: The effects of suburban scattered emissions in winter
2017
Seasonal variation and spatial distribution of PM2.5 bound polycyclic aromatic hydrocarbons (PAHs) were investigated at urban residential, commercial area, university, suburban region, and industry in Xi'an, during summer and winter time at 2013. Much higher levels of total PAHs were obtained in winter. Spatial distributions by kriging interpolations principle showed that relative high PAHs were detected in western Xi'an in both summer and winter, with decreasing trends in winter from the old city wall to the 2nd-3rd ring road except for the suburban region and industry. Coefficients of diversity and statistics by SPSS method demonstrated that PAHs in suburban have significant differences (t < 0.05) with those in urban residential in both seasons. The positive Matrix Factorization (PMF) modeling indicated that biomass burning (31.1%) and vehicle emissions (35.9%) were main sources for PAHs in winter and summer in urban, which different with the suburban. The coal combustion was the main source for PAHs in suburban region, which accounted for 46.6% in winter and sharp decreased to 19.2% in summer. Scattered emissions from uncontrolled coal combustion represent an important source of PAHs in suburban in winter and there were about 135 persons in Xi'an will suffer from lung cancer for lifetime exposure at winter levels. Further studies are needed to specify the effluence of the scattered emission in suburban to the city and to develop a strategy for controlling those emissions and lighten possible health effects.
Afficher plus [+] Moins [-]Elimination and ecotoxicity evaluation of phthalic acid esters from textile-dyeing wastewater
2017
Liang, Jieying | Ning, Xun-an | Kong, Minyi | Liu, Daohua | Wang, Guangwen | Cai, Haili | Sun, Jian | Zhang, Yaping | Lu, Xingwen | Yuan, Yong
Phthalic acid esters (PAEs), presented in fabrics, surfactants and detergents, were discharged into the ecosystem during textile-dyeing wastewater treatment and might have adverse effects on water ecosystems. In this study, comprehensive investigations of the content and component distributions of 12 PAEs across different units of four textile-dyeing wastewater plants were carried out in Guangdong Province, China. Ecotoxicity assessments were also conducted based on risk quotients (RQs). On average, 93.54% TOC and 80.14% CODCr were removed following treatment at the four plants. The average concentration of Σ12PAEs in effluent was 11.78 μg/L. PAEs with highest concentrations were dimethylphthalate (6.58 μg/L), bis(2-ethylhexyl)phthalate (2.23 μg/L), and dibutylphthalate (1.98 μg/L). The concentrations of the main toxic PAEs were 2.23 μg/L (bis(2-ethylhexyl)phthalate), 0.19 μg/L (diisononylphthalate) and 0.67 μg/L (dinoctylphthalate); corresponding RQs were 1.4, 0.55, and 0.54 for green algae, respectively. The RQs of Σ12PAEs in effluent of the four plants were >0.1, indicating that Σ12PAEs posed medium or higher ecological risk to fish, Daphnia and green algae. Physicochemical-biochemical system was found to be more effective than biochemical-physicochemical system for TOC and CODCr removal, because pre-physicochemical treatment helped to remove macromolecular organic substances, and reduced the competition with other pollutants during biochemical treatment. However, biochemical-physicochemical system was more effective than physicochemical-biochemical system for elimination of PAEs and for detoxification, since the biochemical treatment might produce the toxic PAEs that could helpfully be settled by post-physicochemical treatment. Moreover, ecotoxicity evaluation was recommended for current textile-dyeing wastewater treatment plants.
Afficher plus [+] Moins [-]PM2.5 in the Yangtze River Delta, China: Chemical compositions, seasonal variations, and regional pollution events
2017
Ming, Lili | Jin, Ling | Li, Jun | Fu, Pingqing | Yang, Wenyi | Liu, Di | Zhang, Gan | Wang, Zifa | Li, Xiangdong
Fine particle (PM2.5) samples were collected simultaneously at three urban sites (Shanghai, Nanjing, and Hangzhou) and one rural site near Ningbo in the Yangtze River Delta (YRD) region, China, on a weekly basis from September 2013 to August 2014. In addition, high-frequency daily sampling was conducted in Shanghai and Nanjing for one month during each season. Severe regional PM2.5 pollution episodes were frequently observed in the YRD, with annual mean concentrations of 94.6 ± 55.9, 97.8 ± 40.5, 134 ± 54.3, and 94.0 ± 57.6 μg m−3 in Shanghai, Nanjing, Hangzhou, and Ningbo, respectively. The concentrations of PM2.5 and ambient trace metals at the four sites showed clear seasonal trends, with higher concentrations in winter and lower concentrations in summer. In Shanghai, similar seasonal patterns were found for organic carbon (OC), elemental carbon (EC), and water-soluble inorganic ions (K+, NH4+, Cl−, NO3−, and SO42-). Air mass backward trajectory and potential source contribution function (PSCF) analyses implied that areas of central and northern China contributed significantly to the concentration and chemical compositions of PM2.5 in Shanghai during winter. Three heavy pollution events in Shanghai were observed during autumn and winter. The modelling results of the Nested Air Quality Prediction Modeling System (NAQPMS) showed the sources and transport of PM2.5 in the YRD during the three pollution processes. The contribution of secondary species (SOC, NH4+, NO3−, and SO42-) in pollution event (PE) periods was much higher than in BPE (before pollution event) and APE (after pollution event) periods, suggesting the importance of secondary aerosol formation during the three pollution events. Furthermore, the bioavailability of Cu, and Zn in the wintertime PM2.5 samples from Shanghai was much higher during the pollution days than during the non-pollution days.
Afficher plus [+] Moins [-]Impacts of climate and management on water balance and nitrogen leaching from montane grassland soils of S-Germany
2017
Fu, Jin | Gasche, R. | Wang, Na | Lü, Haiyan | Butterbach-Bahl, Klaus | Kiese, Ralf
In this study water balance components as well as nitrogen and dissolved organic carbon leaching were quantified by means of large weighable grassland lysimeters at three sites (860, 770 and 600 m a.s.l.) for both intensive and extensive management. Our results show that at E600, the site with highest air temperature (8.6 °C) and lowest precipitation (981.9 mm), evapotranspiration losses were 100.7 mm higher as at the site (E860) with lowest mean annual air temperature (6.5 °C) and highest precipitation (1359.3 mm). Seepage water formation was substantially lower at E600 (−440.9 mm) as compared to E860. Compared to climate, impacts of management on water balance components were negligible. However, intensive management significantly increased total nitrogen leaching rates across sites as compared to extensive management from 2.6 kg N ha−1 year−1 (range: 0.5–6.0 kg N ha−1 year−1) to 4.8 kg N ha−1 year−1 (range: 0.9–12.9 kg N ha−1 year−1). N leaching losses were dominated by nitrate (64.7%) and less by ammonium (14.6%) and DON (20.7%). The low rates of N leaching (0.8–6.9% of total applied N) suggest a highly efficient nitrogen uptake by plants as measured by plant total N content at harvest. Moreover, plant uptake was often exceeding slurry application rates, suggesting further supply of N due to soil organic matter decomposition. The low risk of nitrate losses via leaching and surface runoff of cut grassland on non-sandy soils with vigorous grass growth may call for a careful site and region specific re-evaluation of fixed limits of N fertilization rates as defined by e.g. the German Fertilizer Ordinance following requirements set by the European Water Framework and Nitrates Directive.
Afficher plus [+] Moins [-]