Affiner votre recherche
Résultats 521-530 de 5,109
Occurrence and distribution of neonicotinoid insecticides in surface water and sediment of the Guangzhou section of the Pearl River, South China Texte intégral
2019
Yi, Xiaohui | Zhang, Chao | Liu, Hongbin | Wu, Renren | Tian, Di | Ruan, Jujun | Zhang, Tao | Huang, Mingzhi | Ying, Guangguo
Little information is available about the occurrence of neonicotinoid insecticides in surface water and sediment of the metropolitan regions around the rivers in China. Here we investigate the residual level of neonicotinoids in the Guangzhou section of the Pearl River. At least one or two neonicotinoids was detected in each surface water and sediment, and the total amount of neonicotinoids (∑₅neonics) in surface water ranged from 92.6 to 321 ng/L with a geometric mean (GM) of 174 ng/L. Imidacloprid, thiamethoxam and acetamiprid were three frequently detected neonicotinoids (100%) from surface water. As for the sediment, total concentration was varied between 0.40 and 2.59 ng/g dw with a GM of 1.12 ng/g dw, and acetamiprid and thiacloprid were the common sediment neonicotinoids. Western and Front river-route of the Guangzhou section of the Pearl River suffered a higher neonicotinoids contamination than the Rear river-route, resulting from more effluents of WWTPs receiving, and intensive commercial and human activities. Level of residual neonicotinoids in surface water was significantly correlated with the water quality (p < 0.01), especially items of pH, DO and ORP, and nitrogen and phosphorus contaminants. Compared with reports about residual neonicotinoids in water and sediment previously, the metropolitan regions of the Guangzhou could be confronted with a moderate contamination and showed serious ecological threats (even heavier than the Pearl Rivers). Our results will provide valuable data for understanding of neonicotinoids contamination in the Pearl River Delta and be helpful for further assessing environmental risk of neonicotinoids.
Afficher plus [+] Moins [-]Microplastic in wild populations of the omnivorous crab Carcinus aestuarii: A review and a regional-scale test of extraction methods, including microfibres Texte intégral
2019
Piarulli, Stefania | Scapinello, Sara | Comandini, Paolo | Magnusson, Kerstin | Granberg, Maria | Wong, Joanne X.W. | Sciutto, Giorgia | Prati, Silvia | Mazzeo, Rocco | Booth, Andy M. | Airoldi, Laura
Microplastic (MP) has become ubiquitous in the marine environment. Its threat to marine organisms has been demonstrated under laboratory conditions, yet studies on wild populations still face methodological difficulties. We reviewed the methods used to separate MP from soft animal tissues and highlighted a lack of standardised methodologies, particularly critical for synthetic microfibres. We further compared enzymatic and a potassium hydroxide (KOH)-based alkaline digestion protocols on wild crabs (Carcinus aestuarii) collected from three coastal lagoons in the north Adriatic Sea and on laboratory-prepared synthetic polyester (PES) of different colour and polypropylene (PP). We compared the cost-effectiveness of the two methods, together with the potential for adverse quantitative or qualitative effects on MP that could alter the capability of the polymers to be recognised via microscopic or spectroscopic techniques. Only 5.5% of the 180 examined crabs contained MP in their gastrointestinal tracts, with a notably high quantitative variability between individuals (from 1 to 117 particles per individual). All MP found was exclusively microfibres, mainly PES, with a mean length (±SE) of 0.5 ± 0.03 mm. The two digestion methods provided comparable estimates on wild crabs and did not cause any visible physical or chemical alterations on laboratory-prepared microfibres treated for up to 4 days. KOH solution was faster and cheaper compared to the enzymatic extraction, involving fewer procedural steps and therefore reducing the risk of airborne contamination. With digestion times longer than 4 days, KOH caused morphological alterations of some of the PES microfibres, which did not occur with the enzymatic digestion. This suggests that KOH is effective for the digestion of small marine invertebrates or biological samples for which shorter digestion time is required, while enzymatic extraction should be considered as alternative for larger organisms or sample sizes requiring longer digestion times.
Afficher plus [+] Moins [-]Microplastics' emissions: Microfibers’ detachment from textile garments Texte intégral
2019
Belzagui, Francisco | Crespi, Martí | Alvarez, Antonio | Gutiérrez-Bouzán, Carmen | Vilaseca, Mercedes
Microplastics (synthetic polymers <5 mm) have been recently recognized as a big environmental concern, as their ubiquity is an undeniable fact. Their wide variety regarding shapes, sizes, and materials turn them into an intrinsically risky pollutant capable of causing several environmental impacts. Textile microfibers (MF) are a microplastic sub-group. These are mostly shed when a normal laundry of any garment takes place. Special attention has been put onto them, as high concentrations have been found in products for human consumption as shellfish and tap water. However, as there is no consensus on the methodologies to quantify and report the results of MFs detached from textile garments, the degree of similarity between published studies is very low. Hence, the aim of this research was to evaluate the microfibers’ detachment rates of finished garments and to provide a set of comparable units to report the results. These were found to range between 175 and 560 MF/g or 30000–465000 MF/m² of garment. In addition, there was a high correlation between the MF detachment and the textile article superficial density. Finally, our results were compared with a recent paper that estimated the annual mass flow of MFs to the oceans. This previous publication is 30 times higher when related to the mass but 40 times lower if related to the number of MFs.
Afficher plus [+] Moins [-]The hydro-fluctuation belt of the Three Gorges Reservoir: Source or sink of microplastics in the water? Texte intégral
2019
Zhang, Kai | Chen, Xianchuan | Xiong, Xiong | Ruan, Yuefei | Zhou, Hane | Wu, Chenxi | Lam, Paul K.S.
Reservoirs can be an important environmental compartment for microplastic pollution. Previous investigations have found that surface waters and sediments in the Three Gorges Reservoir (TGR) have had high microplastic abundance, and the Xiangxi River, which is one of the largest primary tributaries of the TGR, has had much higher microplastic abundance than several marine and freshwater systems in China. A strip of land on the bank of the reservoir area, which is called the hydro-fluctuation belt (HFB), is periodically exposed due to the special hydrodynamic conditions in the TGR. The HFB may be an important source and/or sink of microplastics in TGR. In this study, microplastic occurrence in sediments from the Xiangxi River HFB was investigated to reflect the local microplastic pollution status and to evaluate its potential to serve as a source/sink of microplastics in the TGR. Seven sampling sites were selected, and sediments within the HFB and above the belt were collected in summer when the water level was low. The results showed that the microplastic abundance ranged from 0.55 ± 0.12 × 10³ to 14.58 ± 5.67 × 10³ particles m⁻², which was one to two orders of magnitude higher than that in sediments from the Xiangxi River in our previous study (80–846 particles m⁻²). Statistical analysis revealed that the microplastic abundance within the HFB was significantly higher than that of the area above the HFB. The results indicate that the HFB can be an important microplastic sink when the water level is low, and the belt can turn into a potential source when the water level is high. Cluster analysis was applied to reveal the characteristics of the microplastics collected at different sites, and the results suggest that the cluster analysis may be a useful tool in elucidating the source and fate of microplastics.
Afficher plus [+] Moins [-]Interactive effects of As, Cd and Zn on their uptake and oxidative stress in As-hyperaccumulator Pteris vittata Texte intégral
2019
Abid, Rafia | Manzoor, Maria | De Oliveira, Letuzia M. | da Silva, Evandro | Rathinasabapathi, Bala | Rensing, Christopher | Mahmood, Seema | Liu, Xue | Ma, Lena Q.
The effects of arsenic (As), cadmium (Cd) and zinc (Zn) on each other's uptake and oxidative stress in As-hyperaccumulator Pteris vittata were investigated. P. vittata plants were exposed to 50 μM As, Cd and/or Zn for 15 d in 0.2-strength Hoagland solution. When applied alone, P. vittata accumulated 185 mg kg⁻¹ As, 164 mg kg⁻¹ Cd and 327 mg kg⁻¹ Zn in the fronds. While Cd and Zn did not impact each other's uptake, As affected Cd and Zn uptake. Whereas As decreased Zn uptake, Zn affected As speciation in P. vittata fronds, with more arsenate (AsV) than arsenite (AsIII) being present. At 50 μM As, 75 μM Zn increased As accumulation in P. vittata fronds by 10 folds to 2363 mg kg⁻¹ compared to 50 μM Zn. Although AsV was the predominant As species in all tissues, Cd enhanced AsIII levels in the fronds but increased AsV in the roots. Co-exposure of Cd + Zn elevated oxidative stress basing on thiobarbituric acid reactive substances, H₂O₂ content, Evans blue dye uptake, membrane injury index and reactive oxygen species (ROS) relative to single metal. By lowering Cd and Zn concentrations in P. vittata fronds, As reduced the associated stress comparative to Cd or Zn treatment. The results enhance our understanding of the mechanisms underlying the interactions between As, Cd and Zn in As-hyperaccumulator P. vittata.
Afficher plus [+] Moins [-]Adaptive shifts of bacterioplankton communities in response to nitrogen enrichment in a highly polluted river Texte intégral
2019
Yang, Yuzhan | Gao, Yangchun | Huang, Xuena | Ni, Ping | Wu, Yueni | Deng, Ye | Zhan, Aibin
Anthropogenic activity-mediated nutrient pollution, especially nitrogen enrichment, poses one of the major threats to river ecosystems. However, it remains unclear how and to which extent it affects aquatic microbial communities, especially in heavily polluted rivers. In this study, a significant environmental gradient, particularly nitrogen gradient, was observed along a wastewater receiving river, the North Canal River (NCR). The pollution level was highest, moderate, and lowest in the up-, middle, and down-streams, respectively. The community composition of bacterioplankton transitioned from being Betaproteobacteria-dominated upstream to Gammaproteobacteria-dominated downstream. Copiotrophic groups, such as Polynucleobacter (Betaproteobacteria) and Hydrogenophaga (Betaproteobacteria), were dominant in the upstream. Multiple statistical analyses indicated that total nitrogen (TN) was the most important factor driving the adaptive shifts of community structure. Analyses of co-occurrence networks showed that the complexity of networks was disrupted in the up- and middle streams, while enhanced in the downstream. Our findings here suggested that microbial interactions were reduced in response to the aggravation of nutrient pollution. Similar to these changes, we observed significant dissimilarity of composition of functional groups, with highest abundance of nitrogen metabolism members under the highest level of nitrogen enrichment. Further analyses indicated that most of these functional groups belonged to Betaproteobacteria, suggesting the potential coupling of community composition and function diversity. In summary, adaptive shifts of bacterioplankton community composition, as well as species interactions, occurred in response to nutrient pollution in highly polluted water bodies.
Afficher plus [+] Moins [-]Source contribution analysis of mercury deposition using an enhanced CALPUFF-Hg in the central Pearl River Delta, China Texte intégral
2019
Xu, Hui | Zhu, Yun | Wang, Long | Lin, Che-Jen | Jang, Carey | Zhou, Qin | Yu, Bin | Wang, Shuxiao | Xing, Jia | Yu, Lian
Atmospheric mercury (Hg) poses human health and ecological risks once deposited and bio-accumulated through food chains. Source contribution analysis of Hg deposition is essential to formulating emission control strategies to alleviate the adverse impact of Hg release from anthropogenic sources. In this study, a Hg version of California Puff Dispersion Modeling (denoted as CALPUFF-Hg) system with added Hg environmental processes was implemented to simulate the Hg concentration and deposition in the central region of the Pearl River Delta (cPRD) at 1 km × 1 km resolution. The contributions of eight source sectors to Hg deposition were evaluated. Model results indicated that the emission from cement production was the largest contributor to Hg deposition, accounting for 13.0%, followed by coal-fired power plants (6.5%), non-ferrous metal smelting (5.4%), iron and steel production (3.5%), and municipal solid waste incineration (3.4%). The point sources that released a higher fraction of gaseous oxidized mercury, such as cement production and municipal solid waste incineration, were the most significant contributors to local deposition. In this intensive industrialized region, large point sources contributed 67–94% of total Hg deposition of 6 receptors which were the nearest grid-cells from top five Hg emitters of the domain and the largest municipal solid waste incinerator in Guangzhou. Based on the source apportionment results, cement production and the rapidly growing municipal solid waste incineration are identified as priority sectors for Hg emission control in the cPRD region.
Afficher plus [+] Moins [-]Activation of NF-κB pathways mediating the inflammation and pulmonary diseases associated with atmospheric methylamine exposure Texte intégral
2019
Li, Guiying | LIao, Yi | Hu, Junjie | Lu, Lirong | Zhang, Yanan | Li, Bing | An, Taicheng
The effects of methylamine on human health have been debated for several years, but the exact adverse outcomes and definite signaling cascades have not been elucidated yet. Herein, a NF-κB signal pathway, a positive regulator of inflammation was identified as the main pathway of methylamine exposure induced adverse effects in bronchial airway cells (16HBE) for the first time. The results indicated that methylamine could stimulate the overproduction of reactive oxygen species (ROS) in cytoplasm and mitochondria of 16HBE cells. Moreover, ROS accelerate the translocation and phosphorylation of NF-κB in nucleic and promote the expression of inflammatory, such as IL-8 and IL-6. As a result, methylamine was found to be increased ROS-mediated NF-κB activation in cells, leading to the production of inflammatory cytokine. Furthermore, the results also showed that methylamine could affect the expression of cytokines related genes, p53, STAT3, Bcl2, c-myc, Cyclin D, Hes1, Mcl-1, TGF-β2. The breakdown of those cell proliferation and apoptosis related genes were leading to a common toxic mechanism of cell death. In summary, our work uncovers a mechanism by which methylamine can induce the formation of inflammation response and demonstrates potential inflammation and carcinogenesis in human airway cell upon the methylamine inhaled.
Afficher plus [+] Moins [-]Remediation performance and mechanism of hexavalent chromium in alkaline soil using multi-layer loaded nano-zero-valent iron Texte intégral
2019
Hou, Siyu | Wu, Bin | Peng, Dinghua | Wang, Ziru | Wang, Yiyang | Xu, Heng
Remediation of soil chromium (Cr) pollution is becoming more and more urgent. In this study, a multi-loaded nano-zero-valent iron (nZVI) material (CNH) was prepared by carboxymethyl cellulose (CMC) and humic acid (HA) as dispersant and support agent, respectively, and the remediation effect of CNH, HA and CN (CNH without HA) for Cr contaminated soil was investigated within 90 d cycle. After 7 d treatment of CNH, the HOAc-extractable Cr decreased significantly. After the 90 d remediation, the HOAc-extractable Cr decreased most in the treatment of 3% CNH, about 74.48% lower than control. All treatments eventually caused different decline of soil pH, with a range of 0.12–0.54, in which the CNH treatment group had the least depression. HA loading significantly weakened the toxicity of nZVI, resulting in the higher soil microbial quantity and enzyme activities compared with CN. Additionally, the improvement of soil microecology by CNH and HA was positively correlated with the ratio of application, while CN was negatively correlated (except FDA enzyme activity) with these indexes. These results emphasized the potential of the synthesized CNH as a promising material to remediate Cr contaminated soil. Furthermore, details of possible mechanistic insight into the Cr remediation were carefully discussed.
Afficher plus [+] Moins [-]Reprotoxicity of glyphosate-based formulation in Caenorhabditis elegans is not due to the active ingredient only Texte intégral
2019
Jacques, Mauricio Tavares | Bornhorst, Julia | Soares, Marcell Valandro | Schwerdtle, Tanja | Garcia, Solange | Ávila, Daiana Silva
Pesticides guarantee us high productivity in agriculture, but the long-term costs have proved too high. Acute and chronic intoxication of humans and animals, contamination of soil, water and food are the consequences of the current demand and sales of these products. In addition, pesticides such as glyphosate are sold in commercial formulations which have inert ingredients, substances with unknown composition and proportion. Facing this scenario, toxicological studies that investigate the interaction between the active principle and the inert ingredients are necessary. The following work proposed comparative toxicology studies between glyphosate and its commercial formulation using the alternative model Caenorhabditis elegans. Worms were exposed to different concentrations of the active ingredient (glyphosate in monoisopropylamine salt) and its commercial formulation. Reproductive capacity was evaluated through brood size, morphological analysis of oocytes and through the MD701 strain (bcIs39), which allows the visualization of germ cells in apoptosis. In addition, the metal composition in the commercial formulation was analyzed by ICP-MS. Only the commercial formulation of glyphosate showed significant negative effects on brood size, body length, oocyte size, and the number of apoptotic cells. Metal analysis showed the presence of Hg, Fe, Mn, Cu, Zn, As, Cd and Pb in the commercial formulation, which did not cause reprotoxicity at the concentrations found. However, metals can bioaccumulate in soil and water and cause environmental impacts. Finally, we demonstrated that the addition of inert ingredients increased the toxic profile of the active ingredient glyphosate in C. elegans, which reinforces the need of components description in the product labels.
Afficher plus [+] Moins [-]