Affiner votre recherche
Résultats 541-550 de 796
Application of an Air Ionization Device Using an Atmospheric Pressure Corona Discharge Process for Water Purification Texte intégral
2009
Wohlers, Jens | Koh, In-Ock | Thiemann, Wolfram | Rotard, Wolfgang
Pesticides presently being discharged into the aquatic environment are not only toxic but also only partially biodegradable, they are not easily removed by conventional water treatment plants. Air ionization devices using an atmospheric pressure corona discharge process show great promise in improving degradation of chemical and biological contaminants in water purification plants. In order to assess the effectiveness of this air ionization apparatus, laboratory scale degradation experiments were carried out systematically in a bubble column reactor containing a variety of pesticides such as triazines, carbamates, phenyl urea derivates and chlorophenols relative to the addition of humic acid and inorganic chemicals as well as to pH variation. Chemical oxygen demand (COD) decreased with air ionization treatment and the rate of the biological oxygen demand related to this (BOD/COD) showed improved pesticide biodegradability. Changes in water toxicity were monitored by Daphnia- and Luminescence Bacteria tests. This novel water treatment process is shown to be a potent oxidation technique for persistent organic pollutants such as pesticides.
Afficher plus [+] Moins [-]Potential Threats from a Likely Nuclear Power Plant Accident: a Climatological Trajectory Analysis and Tracer Study Texte intégral
2009
Kindap, Tayfun | Turuncoglu, Ufuk Utku | Chen, Shu-Hua | Unal, Alper | Karaca, Mehmet
The legacy of Chernobyl is not the only nuclear accident likely to confront Turkish territory, which is not far from other insecure power plants, especially the Metsamor. The main purpose of this study was to examine the possible impacts to Turkish territory of a hypothetical accident at the Metsamor Nuclear Plant. The research was performed based on two different methodologies: First, a 10-day trajectory analysis was carried out a set of long-term (30 years) meteorological data; second, a tracer study was performed using the MM5T online model for the selected episode. Trajectory and tracer studies showed that an accident at the Metsamor Nuclear Power Plant would influence all of Turkey. Furthermore, vulnerable regions in Turkey after the Chernobyl disaster were demonstrated as a new and first attempt in this study.
Afficher plus [+] Moins [-]Preparation, Characterization, and Adsorption Behavior of Cu(II) Ions onto Alkali-Treated Weed (Imperata cylindrica) Leaf Powder Texte intégral
2009
Hanafiah, M. A. K. M. | Zakaria, H. | Wan Ngah, W. S.
The adsorption of Cu(II) ions by sodium-hydroxide-treated Imperata cylindrica (SoHIC) leaf powder was investigated under batch mode. The influence of solution pH, adsorbent dosage, shaking rate, copper concentration, contact time, and temperature was studied. Copper adsorption was considered fast as the time to reach equilibrium was 40-90 min. Several kinetic models were applied and it was found that pseudo-second-order fitted well the adsorption data. In order to understand the mechanism of adsorption, spectroscopic analyses involving scanning electron microscope (SEM) coupled with energy-dispersive spectroscopy (EDS) and Fourier transform infrared (FTIR) spectrophotometer were carried out. Ion exchange was proven the main mechanism involved as indicated by EDS spectra and as there was a release of light metal ions (K⁺, Na⁺, Mg²⁺, and Ca²⁺) during copper adsorption. Complexation also occurred as demonstrated by FTIR spectra involving hydroxyl, carboxylate, phosphate, ether, and amino functional groups. The equilibrium data were correlated with Langmuir, Freundlich, and Dubinin-Radushkevich isotherm models. Based on Langmuir model, the maximum adsorption capacity was recorded at the highest temperature of 310 K, which was 11.64 mg g⁻¹.
Afficher plus [+] Moins [-]Evaluation of Greenwaste Mulch to Control Runoff Quality from Landfill Sites During Frequent Storms Texte intégral
2009
Brodie, I. M. | Misra, R. K.
This paper describes a preliminary evaluation of two types of greenwaste (fresh and aged) used as a mulch layer to control runoff from disturbed landfill areas. Fresh greenwaste refers to woody and herbaceous garden waste that has been recently collected, chopped and shredded. Aged greenwaste is greenwaste which has been stockpiled for 18 months. We used rainfall simulator tests to investigate two aspects: (1) the performance of greenwaste mulch in reducing runoff during designed storm events with a high frequency of occurrence and (2) the release of pollutants via runoff as total suspended solids (TSS) and total organic carbon (TOC) during rain. Rainfall of <5-year average recurrence interval (ARI) was generally applied, consistent with stormwater compliance requirements for many Australian landfills. TOC released from fresh greenwaste material was higher in concentration than from aged greenwaste. However, when used as a 10-cm-deep mulch layer, fresh greenwaste was able to completely prevent runoff, even when tested under rainfalls of up to 50-year ARI duration. An equivalent mulch layer of aged greenwaste was also effective in reducing runoff volume and TSS concentration compared with the bare soil during a 3.5-year ARI rainfall, but mean TOC concentration was higher. Based on these preliminary results, fresh greenwaste mulching of bare soils is an attractive option to control runoff and erosion from areas subject to intermittent landfill operations and worthy of further investigations.
Afficher plus [+] Moins [-]Cadmium, Copper and Zinc Biosorption Study by Non-Living Egeria densa Biomass Texte intégral
2009
Pietrobelli, Juliana M. T. de A. | Módenes, Aparecido N. | Fagundes-Klen, Márcia R. | Espinoza-Quiñones, Fernando R.
In this work, the potential removal of Cd, Cu, and Zn ions by non-living macrophytes Egeria densa has been studied. The adsorption kinetic and equilibrium experiments of these three metals on E. densa were performed in batch systems with controlled temperature and constant shaking. It was observed that all metal adsorption rates have increased when the pH was increasing. A pH threshold of 5 was established for use in adsorption experiments in order to avoid the metal precipitation. For adsorption kinetic tests, the equilibrium times for all metals were around 45 to 60 min. The equilibrium data at pH 5 were better described by the Langmuir isotherm than the Freundlich one, with the adsorption rate and maximum metal content values of 0.43 L g⁻¹ and 1.25 mequiv g⁻¹ for Cd, 4.11 L g⁻⁻¹ and 1.43 mequiv g⁻¹ for Cu, and 0.83 L g⁻¹ and 0.93 mequiv g⁻¹ for Zn. These adsorption parameters for E. densa resemble or are better than those for other biosorbents already studied, suggesting that the macrophytes E. densa as a biosorbent has a good metal removal potential for applications in effluent treatment systems.
Afficher plus [+] Moins [-]Effects of Water Network Synthesis on the Air Pollutant Emissions and Energy Consumption of a Whole Economy Texte intégral
2009
Lim, Seong-Rin
Environmental and energy performances of a water network system (WNS) utilizing water reuse are compared to those of a conventional water system (CWS) supplying only freshwater from the perspective of an entire economy and life cycle. Environmental input-output analysis (EIOA) is used to evaluate their air pollutant emissions and energy consumptions. The global warming potential and the emissions of carbon monoxide and of volatile organic compounds from the WNS are less than those from the CWS because of the decrease in the consumption of industrial water, while the emissions of sulfur dioxide and of nitrogen oxides and energy consumption from the WNS are greater because of the increase in electricity consumption for pumping. For perfectly environmentally-friendly water reuse, electricity consumption should be constrained or optimized in water network synthesis, and primary energy mix for electricity generation should be shifted towards renewable energy.
Afficher plus [+] Moins [-]Ecology, DNA, and the Future of Microbial Source Tracking Texte intégral
2009
Witty, Michael | Nickels, James | Lisa, Jessica | Tiedemann, John
Fecal pollution from human and natural sources enters soil or watercourses, mixes, then reemerges as a nuisance of unknown origin. Before remediation is attempted, the sources and identities of pollution must be identified. Previous microbial source tracking studies have relied on traditional methods of microbiology such as selective media and biochemical characteristics to quantify fecal bacteria in water samples. This is successful when single sources are responsible for pollution. However, when multiple sources are present, numbers must be subdivided into categories of pollution to define relative importance and select appropriate methods of remediation which are very different for examples such as humans and avifauna pollution. Rather than depending on a single method, we recommend a tiered approach which takes advantage of ecological parameters and conventional microbiology to provide context for more precise DNA data and related statistics.
Afficher plus [+] Moins [-]Metal Availability and Chemical Properties in the Rhizosphere of Lupinus albus L. Growing in a High-Metal Calcareous Soil Texte intégral
2009
Martínez-Alcalá, Isabel | Clemente, Rafael | Bernal, M Pilar
Chemical processes in the rhizosphere play a major role in the availability of metals to plants. The objective of this study was to assess the potential of white lupin (Lupinus albus L.) for the phytoimmobilisation of heavy metals in a calcareous soil with high levels of Zn and Pb (2,058 and 2,947 μg g⁻¹, respectively) by evaluating the chemical changes in the rhizosphere, relative to bulk soil, which modify the solubility of heavy metals. Plants were cultivated for 74 days in specially designed pots (rhizopots) in which rhizosphere was sampled easily under controlled conditions. White lupin accumulated high concentrations of Mn in the shoots (average of 4,960 μg g⁻¹), well above the normal concentration in plants (300 μg g⁻¹). But the metal concentrations found in shoots were not at toxic levels. Rhizosphere soil showed a significantly greater redox potential (245 mV) and water-soluble organic carbon content (34.6 μg C g⁻¹) than bulk soil (227 mV; 27.6 μg C g⁻¹). Root activity decreased EDTA-extractable Pb, Zn and Fe and promoted their precipitation as insoluble compounds in the residual fraction (acid digestion), hardly available to plants. These results indicate the suitability of this annual N₂-fixing species for the initial phytoimmobilisation of heavy metals in contaminated soils.
Afficher plus [+] Moins [-]Toxic Elements in Aquatic Sediments: Distinguishing Natural Variability from Anthropogenic Effects Texte intégral
2009
Hou, Aixin | DeLaune, R. D. | Tan, MeiHuey | Reams, Margaret | Laws, Edward
Regressions of aluminum against potentially toxic elements in the sediments of freshwater aquatic systems in Louisiana were used to distinguish natural variability from anthropogenic pollution when elemental concentrations exceeded screening effects levels. The data were analyzed using geometric mean model II regression methods to minimize, insofar as possible, bias that would have resulted from the use of model I regression. Most cadmium concentrations exceeded the threshold effects level, but there was no evidence of an anthropogenic impact. In Bayou Trepagnier, high concentrations of Cr, Cu, Pb, Ni, and Zn appeared to reflect anthropogenic pollution from a petrochemical facility. In Capitol Lake, high Pb concentrations were clearly associated with anthropogenic impacts, presumably from street runoff. Concentrations of potentially toxic elements varied naturally by as much as two orders of magnitude; hence it was important to filter out natural variability in order to identify anthropogenic effects. The aluminum content of the sediment accounted for more than 50% of natural variability in most cases. Because model I regression systematically underestimates the magnitude of the slope of the regression line when the independent variable is not under the control of the investigator, use of model II regression methods in this application is necessary to facilitate hypothesis testing and to avoid incorrectly associating naturally high elemental concentrations with human impacts.
Afficher plus [+] Moins [-]A Two-Phase Separation Method for Recovery of Cryptosporidium Oocysts from Soil Samples Texte intégral
2009
Zilberman, Alla | Zimmels, Yoram | Starosvetsky, Jeanna | Zuckerman, Udi | Armon, Robert
Cryptosporidium parvum oocysts may reach soil through direct deposition of human or animal fecal material, irrigation with raw wastewater or untreated effluents, and contaminated runoff. Examination of soil samples for oocyst presence is of primary importance in order to prevent secondary contamination of crops and groundwater. Several methods were proposed for oocyst recovery from soil samples; however, their efficiency was very low. In the present study, four known methods used to recover oocysts from water and fecal samples (sedimentation, sedimentation with reduced water content, sucrose floatation, water-ether separation) were compared to a method used in the past to recover bacterial spores from bottom sediments (two-phase separation). The two-phase separation technique proved to be the best method of choice resulting in a recovery average of 61.2 ± 15.6%. According to this method, the lowest and highest recoveries were 37% to 95%, respectively. Two other important outcomes were observed with the soil experimental set-up: (1) recovery efficiency is influenced by oocyst viability (high viability was directly correlated with increased recovery efficiency) and (2) high sand content of soil samples reduced oocyst recovery by its detrimental effect on oocyst viability.
Afficher plus [+] Moins [-]