Affiner votre recherche
Résultats 541-550 de 711
Toxicity of Light Soil Fertilized by Sewage Sludge or Compost in Relation to PAHs Content
2010
Oleszczuk, Patryk
The aim of the present study was to determine the influence of light soil fertilization using sewage sludges or composts on soil toxicity for three plant species (Lepidium sativum, Sorgo saccharatum, and Sinapis alba) and crustaceans (Heterocypris incongruens). The results obtained were compared to the polycyclic aromatic hydrocarbon (PAHs) content as a potential toxicity factor. The PAH content in soils fertilized with sludges was proportional to the dose applied. Soil fertilization with the studied materials negatively influenced plant growth and development. The negative influence was clearer in the case of sewage sludges than composts. Both sludges and composts significantly influenced H. incongruens mortality. However, the influence of sludges and composts on H. incongruens growth did not exceed 20%. The EC50 and LC50 values calculated on the basis of toxicity parameters showed that H. incongruens was characterized by a higher sensitivity to sludges and composts than most of the plants. L. sativum was characterized by the lowest EC50 values among all plants. No significant relationships between sewage sludge or compost toxicity and their PAHs content were observed.
Afficher plus [+] Moins [-]Tetracycline-Resistant Escherichia coli in a Small Stream Receiving Fish Hatchery Effluent
2010
Stachowiak, Matthew | Clark, Shirely E. | Templin, Rebekah E. | Baker, Katherine H.
We examined the impact of the effluent discharged from a freshwater (trout and related species) fish hatchery on the presence of antibiotic-resistant microorganisms in a small stream. There had been no documented use of antibiotics in the hatchery for at least 6 months prior to our study, although a variety of biocides were employed routinely for cleaning. Heterotrophic bacteria and Escherichia coli were isolated from both water column and sediment samples at sites above and below the discharge of the hatchery effluent as well as from the hatchery effluent itself. Randomly chosen isolates (≥96 isolates per site) were tested for their resistance to ampicillin, cephalexin, erythromycin, and tetracycline. Resistance to at least one antibiotic was found in greater than 30% of both the heterotrophic isolates and the E. coli isolates from each of the sites. There were no significant differences among the sites in the proportion of the heterotrophic isolates resistant to any specific antibiotic. The proportion of E. coli isolates resistant to tetracycline in the hatchery effluent and in both the downstream water and sediment samples was significantly higher than in either the upstream water or sediment. These results support the possibility of the hatchery as a source of tetracycline-resistant microorganisms even in the absence of recent use of this antibiotic.
Afficher plus [+] Moins [-]Ciprofloxacin Resistance in Domestic Wastewater Treatment Plants
2010
Manaia, Célia M. | Novo, Ana | Coelho, Bruno Fontes Dias | Nunes, Olga C.
The potential of domestic wastewater treatment plants to contribute for the dissemination of ciprofloxacin-resistant bacteria was assessed. Differences on bacterial counts and percentage of resistance in the raw wastewater could not be explained on basis of the size of the plant or demographic characteristics of population served. In contrast, the treated effluent of the larger plants had significantly more heterotrophs and enterobacteria, including ciprofloxacin-resistant organisms, than the smaller (p < 0.01). Moreover, longer hydraulic retention times were associated with significantly higher percentages of resistant enterobacteria in the treated effluent (p < 0.05). Independently of the size or type of treatment used, domestic wastewater treatment plants discharged per day at least 10¹⁰-10¹⁴ colony forming units of ciprofloxacin-resistant bacteria into the receiving environment.
Afficher plus [+] Moins [-]Assessment of Bacterial and Fungal Aerosol in Different Residential Settings
2010
Nasir, Zaheer Ahmad | Colbeck, I (Ian)
The concentration and size distribution of bacterial and fungal aerosol was studied in 15 houses. The houses were categorized into three types, based on occupant density and number of rooms: single room in shared accommodation (type I), single bedroom flat in three storey buildings (type II) and two or three bedroomed houses (type III). Sampling was undertaken with an Anderson six-stage impactor during the summer of 2007 in the living rooms of all the residential settings. The maximum mean geometric concentration of bacterial (5,036 CFU/m³, ± 2.5, n = 5) and fungal (2,124 CFU/m³, ± 1.38, n = 5) aerosol were in housing type III. The minimum levels of indoor culturable bacteria (1,557 CFU/m³, ±1.5, n = 5) and fungal (925 CFU/m³, ±2.9, n = 5) spores were observed in housing type I. The differences in terms of total bacterial and fungal concentration were less obvious between housing types I and II as compared to type III. With reference to size distribution, the dominant stages for culturable bacteria in housing types I, II and III were stage 3 (3.3-4.7 μm), stage 1 (7 μm and above) and stage 5 (1.1-2.1 μm), respectively. Whereas the maximum numbers of culturable fungal spores were recovered from stage 2 (4.7-7 µm), in housing type I, and from stage 4 (2.1-3.3 μm) in both type II and III houses. The average geometric mean diameter of bacterial aerosol was largest in type I (4.7 μm), followed by type II (3.89 μm) and III (1.96 μm). Similarly, for fungal spores, type I houses had the highest average mean geometric diameter (4.5 μm), while in types II and III the mean geometric diameter was 3.57 and 3.92 μm, respectively. The results indicate a wide variation in total concentration and size of bioaerosols among different residential settings. The observed differences in the size distributions and concentrations reflect their variable airborne behaviour and, as a result, different risks of respiratory exposure of the occupants to bioaerosols in various residential settings.
Afficher plus [+] Moins [-]Effect of Flow Rate, Concentration and Transient—State Operations on the Performance of a Biofilter Treating Xylene Vapors
2010
Rene, Eldon R. | Murthy, D. V. S. | Swaminathan, T.
Biological treatment systems such as biofilters offer a potential alternative to the existing physicochemical techniques for the removal of volatile organic compounds from gaseous emissions. In this experimental work, continuous phase biofiltration of xylene vapors were performed in a laboratory scale compost biofilter that was inoculated with a xylene-acclimatized consortium. The performance was assessed by continuously monitoring the removal efficiency (RE) and elimination capacity (EC) of the biofilter at loading rates varying between 2-220 g m⁻³ h⁻¹. The steady-state removal efficiencies were maintained between 60% and 90% up to a loading rate of 80 g m⁻³ h⁻¹. The removal efficiency decreased significantly at loading rates higher than 100 g m⁻³ h⁻¹. The pressure drop values were consistently less and insignificant in affecting the performance of the system. The present study also focuses in evaluating the stability of biofilter during shut down, restart, and shock-loading operations. An immediate restoration of biological activity after few days of starvation indicated their capability to handle discontinuous treatment situations which is more common to industrial biofilters. The sensitiveness of the biofilm to withstand shock loads was tested by abruptly increasing/decreasing the loading rates between 9-55 g m⁻³ h⁻¹, where, removal efficiencies between 60-90% were achieved. These results prove the resilience of the biomass and the stability of the compost biofilter. Anew, results from kinetic analysis reveal that, steady-state xylene removal in the biofilter can be adequately represented by Michaelis-Menten type kinetics, and the kinetic constants namely, ECmax (120.4 g m⁻³ h⁻¹) and K s (2.21 g m⁻³) were obtained.
Afficher plus [+] Moins [-]N-Application Methods and Precipitation Pattern Effects on Subsurface Drainage Nitrate Losses and Crop Yields
2010
Bakhsh, Allah | Kanwar, Ramesh S. | Baker, J. L.
Diverting the infiltrating water away from the zone of N application can reduce nitrate-nitrogen (NO₃-N) leaching losses to groundwater from agricultural fields. This study was conducted from 2001 through 2005 to determine the effects of N-application methods using a localized compaction and doming (LCD) applicator and spoke injector on NO₃-N leaching losses to subsurface drainage water and corn (Zea mays L.)-soybean (Glycine max L.) yields. The field experiments were conducted at the Iowa State University's northeastern research center near Nashua, Iowa, on corn-soybean rotation plots under chisel plow system having subsurface drainage ‘tile' system installed in 1979. The soils at the site are glacial till derived soils. The N-application rates of 168 kg-N ha⁻¹ were applied to corn only for both the treatments each replicated three times in a randomized complete block design. For combined 5 years, the LCD N-applicator in comparison with spoke injector showed lower flow weighted NO₃-N concentrations in tile water (16.8 vs. 20.1 mg L⁻¹) from corn plots, greater tile flow (66 vs. 49 mm), almost equivalent NO₃-N leaching loss with tile water (11.5 vs. 11.3 kg-N ha⁻¹) and similar corn grain yields (11.17 vs. 11.37 Mg ha⁻¹), respectively, although treatments effects were found to be non-significant (p = 0.05) statistically. The analysis, however, revealed that amount and temporal distribution of the growing season precipitation also affected the tile flow, NO₃-N leaching loss to subsurface drain water, and corn-soybean yields. Moreover, the spatial variability effects from plot to plot in some cases, resulted in differences of tile flow and NO₃-N leaching losses in the range of three to four times despite being treated with the same management practices. These results indicate that the LCD N-applicator in comparison with spoke injector resulted in lower flow weighted NO₃-N concentrations in subsurface drain water of corn plots; however, strategies need to be developed to reduce the offsite transport of nitrate leaching losses during early spring period from March through June.
Afficher plus [+] Moins [-]The Case of Pollution of Lake Maggiore: a 12-Year Study with the Bioindicator Mussel Dreissena polymorpha
2010
Riva, Consuelo | Binelli, Andrea | Parolini, Marco | Provini, Alfredo
In 1996, dichlorodiphenyltrichloroethane (DDT) pollution of industrial origin was discovered in Lake Maggiore. It was caused by industrial effluents on a tributary of the River Toce, one of the major affluents of the lake in correspondence of Pallanza Bay. This event is the worst case of environmental pollution that has occurred in Western countries in the last 25 years, not due to agricultural use of DDT, but because of an accidental industrial discharge. Heavy polychlorinated biphenyls (PCBs) pollution was also noticed in 2002, with concentration levels three to seven times higher than those measured in other Italian subalpine lakes. In this study, the current DDT and PCBs contamination levels were assessed according to their presence in zebra mussel (Dreissena polymorpha) specimens sampled in the last 5 years (2003-2008) in eight sampling stations of Lake Maggiore, chosen to cover the entire perimeter of the basin. Moreover, for two stations (Baveno and Pallanza-Villa Taranto) located inside and outside Pallanza Bay, respectively, it is possible to make comparisons starting from 1996. The results obtained show how Lake Maggiore is still an ecosystem with a severe environmental risk, more than 10 years after the original insecticide discharge. DDT contamination continues to evolve, and natural events, like lake overturn, floods, and heavy rains, can have a great influence on the insecticide levels in the lake. By contrast, PCB contamination is absolutely negligible, even if the peak of pollution revealed in 2002 seems to indicate that these pollutants are still present in large quantities in the Lake Maggiore watershed.
Afficher plus [+] Moins [-]Assessment of Two New Ligands for Increasing the Uptake of Cd, Cr, and Ni in Helianthus annuus Grown in a Sandy-Loam Soil
2010
Turgut, Cafer | Babahan, Ilknur | Atatanir, Levent | Cutright, Teresa J.
The use of two new ligands, (1Z)-1-(4-aminophenyl) ethan-1-one semicarbazone (L¹) and (1Z)-1-(4-nitrophenyl)ethan-1-one semicarbazone (L²), was evaluated for their potential use as chelators in increasing phytoremediation effectiveness. The uptake of heavy metals by Teddy Bear sunflowers increased when L¹ added at 0.1 and 0.3 g/kg. Metal uptake selectivity was Cr > Ni ≫ Cd for each treatment. The 0.1-g/kg L¹ ligands produced a significant uptake of metals in Sundance sunflowers. The 0.3-g/kg L¹ level increased the metal uptake, but it was lower than 0.1-g/kg L¹ treatment. The uptake selectivity with L² ligand was Cr > Ni > Cd, with the majority of metals retained in the roots. L¹ ligand was better compared in comparison to L² ligand for enhancing uptake of metals.
Afficher plus [+] Moins [-]Phytoextraction of Lead from Soil from a Battery Recycling Site: The Use of Citric Acid and NTA
2010
de Araújo, Josângela do Carmo Trezena | do Nascimento, Clístenes Williams Araújo
Phytoextraction is a soil remediation technique involving plants that concentrate heavy metals in their shoots, which may be removed from the area by harvest. The application of synthetic chelants to soil increases metal solubility, and therefore enhances phytoextraction. However, synthetic chelants degrade poorly in soil, and metal leaching poses a threat to human and animal health. The aim of this study is to assess the use of two biodegradable chelants (citric acid and nitrilotriacetic acid (NTA)) for Pb phytoextraction by maize from a soil contaminated by battery-casing disposal. In order to assess the behavior of a non-degradable chelant, ethylenediaminetetraacetic acid (EDTA) was also included in the experiment. The chelants NTA and EDTA were applied to soil pots at rates of 0, 3, 5, 7, and 10 mmol kg⁻¹ of soil. The rates used to citric acid were 0, 5, 10, 15, and 30 mmol kg⁻¹. Maize plants were grown for 72 days and chelants were applied 9 days before harvest. Soil samples were extracted with CaCl₂ to assess the Pb solubility after chelants application. The results showed that NTA was more efficient than citric acid to solubilize Pb from soil; however, citric acid promoted higher net removal of Pb (120 mg pot⁻¹) than NTA (57 mg pot⁻¹). Thus, the use of citric acid, a biodegradable organic acid, could be feasible for enhancing the phytoextraction of Pb from the site studied with no environmental constraints.
Afficher plus [+] Moins [-]Electrochemical Production of Ferrate (Iron VI): Application to the Wastewater Treatment on a Laboratory Scale and Comparison with Iron (III) Coagulant
2010
Stanford, Cécile | Jiang, Jia-Qian | Alsheyab, Mohammad
This paper presents a comparative study of the performance of ferrate(VI), FeO ₄ ²⁻ , and ferric, Fe(III), towards wastewater treatment. The ferrate(VI) was produced by electrochemical synthesis, using steel electrodes in a 16 M NaOH solution. Domestic wastewater collected from Hailsham North Wastewater Treatment Works was treated with ferrate(VI) and ferric sulphate (Fe(III)). Samples were analysed for suspended solids, chemical oxygen demand (COD), biochemical oxygen demand (BOD) and P removal. Results for low doses of Fe(VI) were validated via a reproducibility study. Removal of phosphorous reached 40% with a Fe(VI) dose as low as 0.01 mg/L compared to 25% removal with 10 mg/L of Fe(III). For lower doses (<1 mg/L as Fe), Fe(VI) can achieve between 60% and 80% removals of SS and COD, but Fe(III) performed even not as well as the control sample where no iron chemical was dosed. The ferrate solution was found to be stable for a maximum of 50 min, beyond which Fe(VI) is reduced to less oxidant species. This provided the maximum allowed storage time of the electrochemically produced ferrate(VI) solution. Results demonstrated that low addition of ferrate(VI) leads to good removal of P, BOD, COD and suspended solids from wastewater compared to ferric addition and further studies could bring an optimisation of the dosage and treatment.
Afficher plus [+] Moins [-]