Affiner votre recherche
Résultats 541-550 de 4,291
Uptake and subcellular distribution of triclosan in typical hydrophytes under hydroponic conditions
2017
He, Yupeng | Nie, Enguang | Li, Chengming | Ye, Qingfu | Wang, Haiyan
The increasing discharge of pharmaceuticals and personal care products (PPCPs) into the environment has generated serious public concern. The recent awareness of the environmental impact of this emerging class of pollutants and their potential adverse effects on human health have been documented in many reports. However, information regarding uptake and intracellular distribution of PPCPs in hydrophytes under hydroponic conditions, and potential human exposure is very limited. A laboratory experiment was conducted using ¹⁴C-labeled triclosan (TCS) to investigate uptake and distribution of TCS in six aquatic plants (water spinach, purple perilla, cress, penny grass, cane shoot, and rice), and the subcellular distribution of ¹⁴C-TCS was determined in these plants. The results showed that the uptake and removal rate of TCS from nutrient solution by hydrophytes followed the order of cress (96%) > water spinach (94%) > penny grass (87%) > cane shoot (84%) > purple perilla (78%) > rice (63%) at the end of incubation period (192 h). The range of ¹⁴C-TCS content in the roots was 94.3%–99.0% of the added ¹⁴C-TCS, and the concentrations in roots were 2–3 orders of magnitude greater than those in shoots. Furthermore, the subcellular fraction-concentration factor (3.6 × 10²–2.6 × 10³ mL g⁻¹), concentration (0.58–4.47 μg g⁻¹), and percentage (30%–61%) of ¹⁴C-TCS in organelles were found predominantly greater than those in cell walls and/or cytoplasm. These results indicate that for these plants, the roots are the primary storage for TCS, and within plant cells organelles are the major domains for TCS accumulation. These findings provide a better understanding of translocation and accumulation of TCS in aquatic plants at the cellular level, which is valuable for environmental and human health assessments of TCS.
Afficher plus [+] Moins [-]Carboxylesterase-involved metabolism of di-n-butyl phthalate in pumpkin (Cucurbita moschata) seedlings
2017
Lin, Qingqi | Chen, Siyuan | Chao, Yuanqing | Huang, Xiongfei | Wang, Shizhong | Qiu, Rongliang
Uptake and accumulation by plants is a significant pathway in the migration and transformation of phthalate esters (PAEs) in the environment. However, limited information is available on the mechanisms of PAE metabolism in plants. Here, we investigated the metabolism of di-n-butyl phthalate (DnBP), one of the most frequently detected PAEs, in pumpkin (Cucurbita moschata) seedlings via a series of hydroponic experiments with an initial concentration of 10 mg L⁻¹. DnBP hydrolysis occurred primarily in the root, and two of its metabolites, mono-n-butyl phthalate (MnBP) and phthalic acid (PA), were detected in all plant tissues. The MnBP concentration was an order of magnitude higher than that of PA in shoots, which indicated MnBP was more readily transported to the shoot than was PA because of the former's dual hydrophilic and lipophilic characteristics. More than 80% of MnBP and PA were located in the cell water-soluble component except that 96% of MnBP was distributed into the two solid cellular fractions (i.e., cell wall and organelles) at 96 h. A 13–20% and 29–54% increase of carboxylesterase (CXE) activity shown in time-dependent and concentration-dependent experiments, respectively, indicated the involvement of CXEs in plant metabolism of DnBP. The level of CXE activity in root subcellular fractions was in the order: the cell water-soluble component (88–94%) >> cell wall (3–7%) > cell organelles (3–4%), suggesting that the cell water-soluble component is the dominant locus of CXE activity and also the domain of CXE-catalyzed hydrolysis of DnBP. The addition of triphenyl phosphate, a CXE inhibitor, led to 43–56% inhibition of CXE activity and 16–25% increase of DnBP content, which demonstrated the involvement of CXEs in plant metabolism of DnBP. This study contributes to our understanding of enzymitic mechanisms of PAE transformation in plants.
Afficher plus [+] Moins [-]Using new hetero-spectral two-dimensional correlation analyses and synchrotron-radiation-based spectromicroscopy to characterize binding of Cu to soil dissolved organic matter
2017
Sun, Fusheng | Li, Yaqing | Wang, Xiang | Chi, Zhilai | Yu, Guanghui
Understanding the binding characteristics of copper (Cu) to different functional groups in soil dissolved organic matter (DOM) is important to explore Cu toxicity, bioavailability and ultimate fate in the environment. However, the methods used to explore such binding characteristics are still limited. Here, two-dimensional correlation spectroscopy (2DCOS) integrated with Fourier transform infrared (FTIR), 29Si nuclear magnetic resonance (NMR), 27Al NMR, and synchrotron-radiation-based FTIR spectromicroscopy were used to explore the binding characteristics of Cu to soil DOM as part of a long-term (23 years) fertilization experiment. Compared with no fertilization and inorganic fertilization (NPK), long-term pig manure fertilization (M) treatment significantly increased the concentration of total and bioavailable Cu in soils. Furthermore, hetero-spectral 2DCOS analyses demonstrated that the binding characteristics of Cu onto functional groups in soil DOM were modified by fertilization regimes. In the NPK treatment, Cu was bound to aliphatic C, whereas in the manure treatment SiO groups had higher affinity toward Cu than aliphatic C. Also, the sequence of binding of functional groups to Cu was modified by the fertilization treatments. Moreover, synchrotron-radiation-based FTIR spectromicroscopy showed that Cu, clay minerals and sesquioxides, and C functional groups were heterogeneously distributed at the micro-scale. Specifically, clay-OH as well as mineral elements had a distribution pattern similar to Cu, but certain (but not all) C forms showed a distribution pattern inconsistent with that of Cu. The combination of synchrotron radiation spectromicroscopy and 2DCOS is a useful tool in exploring the interactions among heavy metals, minerals and organic components in soils.
Afficher plus [+] Moins [-]Urinary paraben concentrations and their associations with anthropometric measures of children aged 3 years
2017
Guo, Jianqiu | Wu, Chunhua | Lu, Keng | Jiang, Shuai | Liang, Weijiu | Chang, Xiuli | Xu, Hao | Wang, Guoquan | Zhou, Zhijun
Parabens, known as ubiquitous preservatives, have been linked to adverse health outcomes in humans. This study aimed to examine urinary paraben concentrations of children at 3 years of age and evaluate their associations with anthropometric parameters. Urinary parabens including methylparaben (MeP), ethylparaben (EtP), propylparaben (PrP), butylparaben (BuP) and benzylparaben (BeP) were measured among 436 children in a birth cohort using gas chromatography with tandem mass spectrometry. Generalized linear models were performed to evaluate associations of paraben exposures with age- and sex-specific z scores, including weight, height, weight for height and body mass index. MeP, EtP and PrP were the dominant parabens in urinary samples, with the median concentrations of 6.03 μg/L, 3.17 μg/L, 2.40 μg/L, respectively. The median values of estimated daily intake (EDIurine) of five urinary paraben concentrations were 12.10, 5.68, 4.50, 0.06 and 0.17 μg/kg-body weight/day, respectively. Urinary EtP concentrations were positively associated with weight z scores [regression coefficient β = 0.16, 95% confidence interval (CI): 0.04, 0.29; p = 0.01] and height z scores (β = 0.15, 95% CI: 0.03, 0.27; p = 0.01). Positive associations were found between the sum of molar concentrations of five parabens and height z scores among all children (β = 0.24, 95% CI: 0.04, 0.45; p = 0.02). These significant associations were only observed in boys. Our findings suggest that exposure to parabens may be adversely associated with physical growth in 3-year-old boy children. Further prospective studies are warranted to understand the toxicological mechanisms of paraben exposures and potential risk of children.
Afficher plus [+] Moins [-]Ranking current and prospective NO2 pollution mitigation strategies: An environmental and economic modelling investigation in Oxford Street, London
2017
Jeanjean, A.P.R. | Gallagher, J. | Monks, P.S. | Leigh, R.J.
Air pollution continues to be a problem in the urban environment. A range of different pollutant mitigation strategies that promote dispersion and deposition exist, but there is little evidence with respect to their comparative performance from both an environmental and economic perspective. This paper focuses on examining different NO2 mitigation strategies such as trees, buildings facades coated with photocatalytic paint and solid barriers in Oxford Street in London. The case study findings will support ranking the environmental and economic impacts of these different strategies to improve personal exposure conditions on the footpath and on the road in a real urban street canyon. CFD simulations of airflow and NO2 dispersion in Oxford Street in London were undertaken using the OpenFOAM software platform with the k-ε model, taking into account local prevailing wind conditions. Trees are shown to be the most cost-effective strategy, with a small reduction in NO2 concentrations of up to 0.7% on the road. However, solid barriers with and without the application of photocatalytic paint and an innovative material (20 times more expensive than trees) can improve air quality on the footpaths more substantially, up to 7.4%, yet this has a significant detrimental impact on NO2 concentrations (≤23.8%) on the road. Photocatalytic paint on building surfaces presented a minimal environmental reductions (1.2%) and economic (>100 times more expensive than trees) mitigation strategy. The findings recognised the differences between footpath and road concentrations occurred and that a focused examination of three pollution hotspots can provide more cost effective pollution mitigation. This study considers how a number of pollutant mitigation measures can be applied in a single street canyon and demonstrates the strengths and weaknesses of these strategies from economic and environmental perspectives. Further research is required to extrapolate the findings presented here to different street geometries.
Afficher plus [+] Moins [-]Comparative toxicity and endocrine disruption potential of urban and rural atmospheric organic PM1 in JEG-3 human placental cells
2017
van Drooge, Barend L. | Marqueño, Anna | Grimalt, Joan O. | Fernández, Pilar | Porte, Cinta
Outdoor ambient air particulate matter and air pollution are related to adverse effects on human health. The present study assesses the cytotoxicity and ability to disrupt aromatase activity of organic PM1 extracts from rural and urban areas at equivalent air volumes from 2 to 30 m3, in human placental JEG-3 cells. Samples were chemically analyzed for particle bounded organic compounds with endocrine disrupting potential, i.e. PAH, O-PAH, phthalate esters, but also for organic molecular tracer compounds for the emission source identification. Rural samples collected in winter were cytotoxic at the highest concentration tested and strongly inhibited aromatase activity in JEG-3 cells. No cytotoxicity was detected in summer samples from the rural site and the urban samples, while aromatase activity was moderately inhibited in these samples. In the urban area, the street site samples, collected close to intensive traffic, showed stronger inhibition of aromatase activity than the samples simultaneously collected at a roof site, 50 m above ground level. The cytotoxicity and endocrine disruption potential of the samples were linked to combustion products, i.e. PAH and O-PAH, especially from biomass burning in the rural site in winter.
Afficher plus [+] Moins [-]Short-term effects of ambient air pollution on pediatric outpatient visits for respiratory diseases in Yichang city, China
2017
Liu, Yuewei | Xie, Shuguang | Yu, Qing | Huo, Xixiang | Ming, Xiaoyan | Wang, Jing | Zhou, Yun | Peng, Zhe | Zhang, Hai | Cui, Xiuqing | Xiang, Hua | Huang, Xiji | Zhou, Ting | Chen, Weihong | Shi, Tingming
Previous studies have suggested that short-term exposure to ambient air pollution was associated with pediatric hospital admissions and emergency room visits for certain respiratory diseases; however, there is limited evidence on the association between short-term air pollution exposure and pediatric outpatient visits. Our aim was to quantitatively assess the short-term effects of ambient air pollution on pediatric outpatient visits for respiratory diseases. We conducted a time-series study in Yichang city, China between Jan 1, 2014 and Dec 31, 2015. Daily counts of pediatric respiratory outpatient visits were collected from 3 large hospitals, and then linked with air pollution data from 5 air quality monitoring stations by date. We used generalized additive Poisson models to conduct linear and nonlinear exposure-response analyses between air pollutant exposures and pediatric respiratory outpatient visits, adjusting for seasonality, day of week, public holidays, temperature, and relative humidity. Each interquartile range (IQR) increase in PM2.5 (lag 0), PM10 (lag 0), NO2 (lag 0), CO (lag 0), and O3 (lag 4) concentrations was significantly associated with a 1.91% (95% CI: 0.60%, 3.23%), 2.46% (1.09%, 3.85%), 1.88% (0.49%, 3.29%), 2.00% (0.43%, 3.59%), and 1.91% (0.45%, 3.39%) increase of pediatric respiratory outpatient visits, respectively. Similarly, the nonlinear exposure-response analyses showed monotonic increases of pediatric respiratory outpatient visits by increasing air pollutant exposures, though the associations for NO2 and CO attenuated at higher concentrations. These associations were unlikely modified by season. We did not observe significant association for SO2 exposure. Our results suggest that short-term exposures to PM2.5, PM10, NO2, CO, and O3 may account for increased risk of pediatric outpatient visits for respiratory diseases, and emphasize the needs for reduction of air pollutant exposures for children.
Afficher plus [+] Moins [-]Abundance of carbapenemase genes (blaKPC, blaNDM and blaOXA-48) in wastewater effluents from Tunisian hospitals
2017
Nasri, Emna | Subirats, Jessica | Sànchez-Melsió, Alexandre | Ben Mansour, Hedi | Borrego, Carles M. | Balcázar, José Luis
Carbapenems are β-lactam antibiotics with a broad spectrum of activity and are usually considered the last resort for the treatment of severe infections caused by multidrug-resistant pathogens. The clinically most significant carbapenemases are KPC, NDM, and OXA-48-like enzymes, whose genes have been increasingly reported worldwide in members of the family Enterobacteriaceae. In this study, we quantified the abundance of these genes in wastewater effluents from different Tunisian hospitals. The blaNDM and blaOXA-48-like genes were detected at similar concentrations in all hospital wastewater effluents. In contrast, the blaKPC gene was detected at lower concentration than other genes and it was only detected in three of the seven effluents analyzed. To the best of our knowledge, this study quantified for the first time the abundance of blaKPC, blaNDM, and blaOXA-48-like genes in wastewater effluents from Tunisian hospitals, highlighting the widespread distribution of these carbapenemase genes.
Afficher plus [+] Moins [-]Metal accumulation and detoxification mechanisms in mycorrhizal Betula pubescens
2017
Fernández-Fuego, D. | Bertrand, A. | González, A.
Metal detoxification in plants is a complex process that involves different mechanisms, such as the retention of metals to the cell wall and their chelation and subsequent compartmentalization in plant vacuoles. In order to identify the mechanisms involved in metal accumulation and tolerance in Betula pubescens, as well as the role of mycorrhization in these processes, mycorrhizal and non-mycorrhizal plants were grown in two industrial soils with contrasting concentrations of heavy metals.Mycorrhization increased metal uptake at low metal concentrations in the soil and reduced it at high metal concentrations, which led to an enhanced growth and biomass production of the host when growing in the most polluted soil. Our results suggest that the sequestration on the cell wall is the main detoxification mechanism in white birch exposed to acute chronic metal-stress, while phytochelatins play a role mitigating metal toxicity inside the cells. Given its high Mn and Zn root-to-shoot translocation rate, Betula pubescens is a very promising species for the phytoremediation of soils polluted with these metals.
Afficher plus [+] Moins [-]Novel use of field-portable-XRF for the direct analysis of trace elements in marine macroalgae
2017
Bull, Annie | Brown, M. T. | Turner, Andrew
Samples of dried marine macroalgae (Fucus serratus, Palmaria palmata and Ulva lactuca) have been analysed for trace elements by a novel, non-destructive approach involving a Niton field-portable-X-ray fluorescence (FP-XRF) spectrometer configured in a low density plastics mode with thickness correction. Detection limits for a 200-s counting time ranged from <5 μg g⁻¹ for As and Pb in F. serratus and As in P. palmata to several tens of μg g⁻¹ for Cd, Sb and Sn in all species tested. Arsenic, Cu, Pb and Zn were detected by the XRF in samples collected from a protected beach (n = 18) and in samples therefrom that had been exposed to additional aqueous elements in combination (n = 72) with concentrations returned (in μg g⁻¹) ranging from 3.9 to 39.7 for As, 13.0 to 307 for Cu, 6.1 to 14.7 for Pb and 12.5 to 522 for Zn. Independent measurements of trace elements in the macroalgae by ICP-MS following nitric acid digestion revealed a direct and significant proportionality with concentrations returned by the XRF, with slopes of the XRF-ICP relationships (As = 1.0; Cu = 2.3; Pb = 2.4; Zn = 1.7) that can be used to calibrate the instrument for direct measurements. The approach shows potential for the in situ monitoring of macroalgae in coastal regions that is currently being investigated.
Afficher plus [+] Moins [-]