Affiner votre recherche
Résultats 541-550 de 6,546
Emerging perfluoroalkyl substance impacts soil microbial community and ammonia oxidation Texte intégral
2020
Ke, Yanchu | Chen, Jianfei | Hu, Xiaoyan | Tong, Tianli | Huang, Jun | Xie, Shuguang
Legacy perfluoroalkyl and poly-fluoroalkyl substances (PFASs) are gradually phased out because of their persistence, bioaccumulation, toxicity, long-distance transport and ubiquity in the environment. Alternatively, emerging PFASs are manufactured and released into the environment. It is accepted that PFASs can impact microbiota, although it is still unclear whether emerging PFASs are toxic towards soil microbiota. However, it could be assumed that OBS could impact soil microorganisms because it had similar chemical properties (toxicity and persistence) as legacy PFASs. The present study aimed to explore the influences of an emerging PFAS, namely sodium p-perfluorous nonenoxybenzene sulfonate (OBS), on archaeal, bacterial, and ammonia-oxidizing archaea (AOA) and bacteria (AOB) communities and ammonia oxidation. Grassland soil was amended with OBS at different dosages (0, 1, 10 and 100 mg/kg). After OBS amendment, tolerant microorganisms (e.g., archaea and AOA) were promoted, while susceptive microorganisms (e.g., bacteria and AOB) were inhibited. OBS amendment greatly changed microbial structure. Potential nitrifying activity was inhibited by OBS in a dose-dependent manner during the whole incubation. Furthermore, AOB might play a more important role in ammonia oxidation than AOA. Overall, OBS influenced ammonia oxidation by regulating the activity, abundance and structure of ammonia-oxidizing microorganisms, and could also exert influences on total bacterial and archaeal populations.
Afficher plus [+] Moins [-]Studying the mixture effects of brominated flame retardants and metal ions by comet assay Texte intégral
2020
Wang, Biyan | Wang, Haiyan | Han, Daxiong | Chen, Jinming | Yin, Yan
This study was designed to evaluate the sensitivities of diverse cell lines on DNA damage effects and genotoxic effects of three brominated flame retardants (BFRs) and three metal ions (Cu²⁺, Cd²⁺, Hg²⁺) by comet assay. First, THP-1 was identified as the most sensitive cell line in terms of DNA damage among 11 kinds of cells screened. Accordingly, the THP-1 cell line was used as a model in subsequent single/combined genotoxicity tests. Single exposure tests to BFRs or metal ions revealed that the DNA damage effects increased with increasing exposure concentration. In combined exposure tests, BFRs (at concentrations of 1/2 EC₅₀) were deployed in combination with different concentrations of Cu²⁺, Cd²⁺, or Hg²⁺. The results showed that the % tail DNA values were significantly increased by most mixtures. Our findings on combined toxic effects by comet assay provide valuable information for setting valid environmental safety evaluation standards.
Afficher plus [+] Moins [-]Comparison of receptor models for source identification of organophosphate esters in major inflow rivers to the Bohai Sea, China Texte intégral
2020
Qi, Yanjie | Liu, Xing | Wang, Zhen | Yao, Ziwei | Yao, Wenjun | Shangguan, Kuixing | Li, Minghao | Ming, Hongxia | Ma, Xindong
A better understanding of the sources of organophosphate esters (OPEs) is a prerequisite for OPE control and the establishment of related environmental policies. Sources of OPEs in 35 major inflow rivers to the Bohai Sea of China were quantitatively analyzed using three effective receptor models (principal component analysis-multiple linear regression (PCA-MLR), positive matrix factorization (PMF), and Unmix) in this paper. The similarities and differences in results from PCA-MLR, PMF, and Unmix were discussed in depth. All three models well predicted the spatial variability of the total concentrations of nine OPEs (triethyl phosphate, tri-n-butyl phosphate, triisobutyl phosphate, tri (2-ethylhexyl) phosphate, tri (2-chloroethyl) phosphate, tris(1-chloro-2-propyl) phosphate, tris(1,3-dichloro-2-propyl) phosphate, triphenyl phosphate, and triphenylphosphine oxide) (∑₉OPEs) (r² = 0.90–0.96, p = 0.000) and explained 98.4%–101.2% of the observed ∑₉OPEs. The predicted ∑₉OPEs values from each pairwise model were significantly correlated (r² = 0.88–0.91, p = 0.000). Three OPE sources were extracted by all three models: rigid and flexible polyurethane foam/coating, cellulosic/acrylic/vinyl polymer/unsaturated polyester, and polyvinyl chloride, contributing 49.9%, 29.7%, and 20.5% by PCA-MLR, 57.9%, 28.6%, and 13.5% by PMF, and 47.9%, 30.8%, and 22.4% by Unmix to the ∑₉OPEs, respectively. PMF was recommended as the preferred receptor model for analyzing OPE sources in water during the monitoring period because of its optimal performance.
Afficher plus [+] Moins [-]Ground-based and OMI-TROPOMI NO2 measurements at El Arenosillo observatory: Unexpected upward trends Texte intégral
2020
Adame, J.A. | Gutierrez-Alvarez, I. | Bolivar, J.P. | Yela, M.
Eleven years, January 2008 to June 2019, of hourly nitrogen dioxide (NO₂) levels recorded at El Arenosillo observatory (Southwestern Europe) were analyzed. Annual averages ranged between 4 μg m⁻³ and 6 μg m⁻³ with peaks exceeding 40 μg m⁻³. A slight monthly variation was observed with maximum and minimum values in the cold (∼6 μg m⁻³) and warm (∼4 μg m⁻³) seasons respectively. A diurnal pattern was found with a weak amplitude (∼3 μg m⁻³). The monthly trends were investigated using surface observations and OMI (Ozone Monitoring instrument) satellite measurements. An unexpected upward trend was obtained in the last five years. The periods with elevated NO₂ concentrations in the last years were analyzed, showing an increase in its frequency and concentrations, linked with the upward trend observed. The weather conditions in these NO₂ peaks were studied using local surface meteorology, mean sea level pressure and wind fields from the data reanalysis of ERA5. The transport of NO₂ was explored using TROPOMI (Tropospheric Monitoring Instrument) measurements. The events occurred under conditions governed by high-pressure systems, which induced weak synoptic airflows or the development of mesoscale processes. Four scenarios of NO₂ transport were identified, associated with weak synoptic flows from inland or Southern Portugal and with mesoscale processes. The gulf of Cadiz plays an important role as a reservoir where the NO₂ coming from the south of Portugal, the Western Mediterranean Basin and urban-industrial areas can be accumulated and later transported inland. A strong correlation was found between the increase of NO₂ observed in the last years and positive anomalies of the temperature and geopotential height at 850 and 500 hPa levels. These findings could indicate that the causes of the changes in the NO₂ would be attributed to alterations in the weather patterns associated with a warmer climate.
Afficher plus [+] Moins [-]Effect of perfluorooctanoic acid on microbial activity in wheat soil under different fertilization conditions Texte intégral
2020
Chen, Huilun | Wang, Qianyu | Cai, Yanping | Yuan, Rongfang | Wang, Fei | Zhou, Beihai | Chen, Zhongbing
Perfluorooctanoic acid (PFOA) is an emerging persistent organic pollutant which has been identified at significant levels in soils. Existed ecotoxicological studies have mainly employed earthworms to evaluate the toxicity of PFOA. However, little information do we know about the toxicity of PFOA regarding soil microorganisms. Accordingly, the adverse effects of PFOA on microbial activity in a wheat soil under four fertilization treatments were investigated in this study. The microcalorimetric results revealed that the toxicity of PFOA on soil microbial activity in four treatments followed a descending sequence: Control (no fertilization), NK (no P fertilizer, but N and K fertilizers were used), PK (no N fertilizer, but P and K fertilizers were used), and NPK (N, P and K fertilizers were used). The soil sample with higher available P content had higher resistant to PFOA. There were significant differences in urease activity and alkaline phosphatase activity among the four fertilization treated soils. Molecular modeling studies clearly demonstrated that the binding of PFOA with alkaline phosphatase was more stable than with urease through electrostatic interaction, van der Waals force, and hydrogen bonds. These results are expected to provide more comprehensive information in toxicity of PFOA in soil environment.
Afficher plus [+] Moins [-]Fe1-xS/biochar combined with thiobacillus enhancing lead phytoavailability in contaminated soil: Preparation of biochar, enrichment of thiobacillus and their function on soil lead Texte intégral
2020
Ye, Junpei | Liao, Wenmin | Zhang, Panyue | Li, Juan | Nabi, Mohammad | Wang, Siqi | Cai, Yajing | Li, Fan
Properly increasing mobility of heavy metals could promote phytoremediation of contaminated soil. Fe₁₋ₓS/biochar was successfully prepared from sawdust with loading pyrrhotite (Fe₁₋ₓS) at a pyrolysis temperature of 550 °C. Thiobacillus were successfully adsorbed and enriched on the surface of Fe₁₋ₓS/biochar. Microbial growth for 36 d supported by bio-oxidization of Fe₁₋ₓS decreased the system pH from 4.32 to 3.50, increased the ORP from 298 to 487 mV, and the Fe³⁺ release reached 25.48 mg/g, enhancing the oxidation and leaching of soil Pb. Finally, Fe₁₋ₓS/biochar and Thiobacillus were simultaneously applied into Pb-contaminated soil for 60 d, the soil pH decreased from 7.83 to 6.72, and the exchangeable fraction of soil Pb increased from 22.86% to 37.19%. Ryegrass planting for 60 d in Pb-contaminated soil with Fe₁₋ₓS/biochar and Thiobacillus showed that the Pb content in shoot and root of ryegrass increased by 55.65% and 73.43%, respectively, confirming an obvious increase of phytoavailability of soil Pb. The relative abundance of Thiobacillus in remediated soil significantly increased from 0.06% to 34.55% due to the addition of Fe₁₋ₓS/biochar and Thiobacillus. This study provides a novel approach for regulating the Pb phytoavailability for phytoremediation of Pb-contaminated soil.
Afficher plus [+] Moins [-]Comparative adsorption mechanism of doxycycline and Congo red using synthesized kaolinite supported CoFe2O4 nanoparticles Texte intégral
2020
Olusegun, Sunday J. | Mohallem, Nelcy D.S.
Kaolinite supported CoFe₂O₄ (KCF) was synthesized and employed to adsorb doxycycline (DOX), an antibiotic and Congo red (CR), a dye from aqueous solution. The prepared KCF nanocomposite was treated in a muffle furnace at 300, 500 and 700 °C, and thereafter characterized. X-ray diffractogram revealed structural damage of kaolinite and appearance of distinct peaks of CoFe₂O₄ with an increase in calcination temperature, while transmission electron microscopy (TEM) images showed that CoFe₂O₄ nanoparticles were supported on the lamellar surface of kaolinites. Comparative adsorption mechanism of the two targeted contaminants showed that adsorption of DOX was influenced by hydrogen bond and n-π interaction, while that of CR was due to hydrophobic interaction and hydrogen bond. However, the adsorption of the two contaminants was best fitted to the isotherm that was proposed by Langmuir, with a monolayer maximum adsorption capacity of 400 mg g⁻¹ at 333 K for DOX, and 547 mg g⁻¹ at 298 K for CR. The removal of DOX from aqueous solution was favored by an increase in temperature (endothermic), while that of CR was exothermic. Thermodynamics studies confirmed that the adsorption of the two contaminants is feasible and spontaneous. The presence of natural organic matter (NOM) did not affect the removal of the two contaminants. Regeneration and reusability study showed that KCF is economically viable. Therefore, introducing inorganic particles like cobalt ferrite into the matrix of kaolinites provides a composite with promising adsorption capacity.
Afficher plus [+] Moins [-]Distribution and availability of rare earth elements and trace elements in the estuarine waters of the Ría of Huelva (SW Spain) Texte intégral
2020
Cánovas, Carlos Ruiz | Basallote, Maria Dolores | Macías, Francisco
Metal pollution in estuaries represents a serious environmental challenge, especially in areas affected by industrial and mining activities. This study investigates the metal partitioning and availability of rare earth elements (REE), Y and other trace metals (Ag, Tl, U and Cs) in the Ria of Huelva estuary (SW Spain), strongly affected by mining and industrial activities. A 30 h monitoring campaign was performed collecting periodic water samples and deploying diffusive gradient in thin films (DGTs) devices to determine the main factors controlling metal availability. The dissolved concentrations of U (3118–3952 ng/L) and Cs (284–392 ng/L) were in the same order of magnitude than those reported in other estuaries and coastal waters worldwide, however, REE (26–380 ng/L), Y (15–109 ng/L), Ag (14–307 ng/L) and Tl (29–631 ng/L) concentrations exceeded these values for the same salinities. Unlike most metals (i.e. Ag, Tl, U, Cs), which were mainly found in the dissolved form (87–100% of total), REE and Y were found in the particulate phase (22–36% of total). Metal lability was mainly related to the concentration in the water column following this order: U>REE>Y>Ag>Tl. A similar binding mechanism was observed for Tl and Cd, due to its chemical affinity. This relationship between chemical properties and absorption by DGT-resin was also observed for REE (and Y), Rb and Sr, which may cause bioaccumulation upon persistent exposure, considering the ability of these metals to cross the biological membranes. The lability of metals predicted by geochemical codes did not coincide with absorption of labile metals by DGTs due probably to the instability of complexes in contact with the DGT membranes, the inability of metals to form thermodynamically stable complexes or the absorption of colloids. From this work it can be concluded that DGT passive sampling should complement traditional sampling to monitor metal availability in aquatic environments.
Afficher plus [+] Moins [-]Effective oxidation of methyl parathion pesticide in water over recycled glass based-MCM-41 decorated by green Co3O4 nanoparticles Texte intégral
2020
Salam, Mohamed Abdel | AbuKhadra, Mostaf R. | Mohamed, Aya S.
Pieces of glass as solid wastes were recycled in the synthesis of highly order MCM-41 that decorated by green fabricated Co₃O₄ nanoparticles using the green extract of green tea leaves forming novel green nano-composite. The synthetic Co₃O₄/MCM-41 exhibit high surface area, low bandgap energy (1.63 eV), and typical spherical morphology decorated by Co₃O₄ nanoparticles. The composite was evaluated as green photocatalyst in effective oxidation of methyl parathion pesticide in the presence of a visible light source. The degradation results revealed complete removal of 50 mg/L and 100 mg/L after 60 min and 90 min, respectively using 0.25 of the catalyst at pH 8. The detection of the TOC in the treated methyl parathion solution gives strong indications about the formation of organic intermediate compounds during the oxidation steps. The main detected intermediate compound are C₆H₅OH(NO₂), C₆H₅OH, (CH₃O)₃P(S), C₆H₄(OH)₂, C₆H₃(OH)₃, C₆H₄(NH₂)OP(O)(OCH₃)₂, (CH₃O)₂P(O)OH, (CH₂)₂C(OH)OH(CHO)OC(O), and HO₂C(CH₂)₂C(O)CHO. The detected intermediate compounds converted into SO₄²⁻, PO₄³⁻, NO₃⁻, and CO₂ under the extensive photocatalytic of them over Co₃O₄/MCM-41. The oxidizing species trapping test verified the controlling of the methyl parathion degradation pathway by the hydroxyl radicals. Finally, the composite showed significant reusability properties and applied five times in the oxidation of methyl parathion with considerable degradation percentages.
Afficher plus [+] Moins [-]Crohn’s disease and environmental contamination: Current challenges and perspectives in exposure evaluation Texte intégral
2020
Tenailleau, Quentin M. | Lanier, Caroline | Gower-Rousseau, Corinne | Cuny, Damien | Deram, Annabelle | Occelli, Florent
Although the incidence of Crohn’s disease has increased worldwide over the past 30 years, the disorder’s exact causes and physiological mechanisms have yet to be determined. Given that genetic determinants alone do not explain the development of Crohn’s disease, there is growing interest in “environmental” determinants. In medical science, the term “environment” refers to both the ecological and social surroundings; however, most published studies have focused on the latter. In environmental and exposure sciences, the term “environment” mostly relates to contamination of the biotope. There are many unanswered questions on how environmental hazards might contribute to the pathogenesis of Crohn’s disease. Which pollutants should be considered? Which mechanisms are involved? And how should environmental contamination and exposure be evaluated? The objective was to perform a systematic review of the literature on Crohn’s disease and environmental contamination. We searched the PubMed, Google Scholar, Scopus, ISI Web of Science and Prospero databases. We considered all field studies previous to April 2019 conducted on human health indicators, and evaluating exposure to all type of physical, biological and chemical contamination of the environment. The lack of clear answers to date can be ascribed to the small total number of field studies (n = 16 of 39 publications, most of which were conducted by pioneering medical scientists), methodological differences, and the small number of contaminants evaluated. This make it impossible to conduct a coherent and efficient meta-analysis. Based on individual analysis of available studies, we formulated five recommendations on improving future research: (i) follow up the currently identified leads - especially metals and endocrine disruptors; (ii) explore soil contamination; (iii) gain a better knowledge of exposure mechanisms by developing transdisciplinary studies; (iv) identify the most plausible contaminants by developing approaches based on the source-to-target distance; and (v) develop registries and cohort-based analyses.
Afficher plus [+] Moins [-]