Affiner votre recherche
Résultats 551-560 de 7,995
Synthesis of oxygen vacancy-enriched N/P co-doped CoFe2O4 for high-efficient degradation of organic pollutant: Mechanistic insight into radical and nonradical evolution Texte intégral
2021
Hu, Mingzhu | Zhu, Jinyi | Zhou, Wenjun
Oxygen vacancy-enriched N/P co-doped cobalt ferrite (NPCFO) was synthesized using ionic liquid as N and P sources, and then the catalytic performance and mechanism of NPCFO upon peroxymonosulfate (PMS) activation for the degradation of organic pollutants were investigated. The as-synthesized NPCFO-700 exhibited excellent catalytic performance in activating PMS, and the degradation rate constant of 4-chlorophenol (4-CP) increased with the increase of OV concentration in NPCFO-x. EPR analysis confirmed the existence of ·OH, SO₄·⁻, and ¹O₂ in the NPCFO-700/PMS system, in which OV could induce the generation of ¹O₂ by PMS adsorption and successive capture, and also served as electronic transfer medium to accelerate the redox cycle of M²⁺/M³⁺ (M denotes Co or Fe) for the generation of radical to synergistically degrade organic pollutants. In addition, the contribution of free radical and nonradical to 4-CP degradation was observed to be strongly dependent on solution pH, and SO₄·⁻ was the major ROS in 4-CP degradation under acid and alkaline condition, while ¹O₂ was involved in the degradation of 4-CP under neutral condition due its selective oxidation capacity, as evidenced by the fact that such organic pollutants with ionization potential (IP) below 9.0 eV were more easily attacked by ¹O₂. The present study provided a novel insight into the development of transition metal-based heterogeneous catalyst containing massive OV for high-efficient PMS activation and degradation of organic pollutants.
Afficher plus [+] Moins [-]Chlorpyrifos and persistent organic pollutants in feathers of the near threatened Olrog’s Gull in southeastern Buenos Aires Province, Argentina Texte intégral
2021
Quadri-Adrogué, Agustina | Seco Pon, Juan Pablo | García, Germán Oscar | Castano, Melina Vanesa | Copello, Sofia | Favero, Marco | Beatriz Miglioranza, Karina Silvia
The use of bird feathers to assess environmental contamination has steadily increased in ecotoxicological monitoring programs over the past decade. The Olrog’s Gull (Larus atlanticus) is a species endemic to the Atlantic coast of southern South America, constituting one of the three threatened gull species listed in the entire American continent. The aim of this study was to assess the exposure to Persistent Organic Pollutants (POPs) and chlorpyrifos in the Near Threatened Olrog’s Gull through the analysis of body feathers sampled at the Mar Chiquita coastal lagoon, the main wintering area of the species in Argentina, controlling for sex and age class. Chlorpyrifos showed the highest concentrations among all contaminants and groups of individuals (X¯ = 263 ng g⁻¹), while among POPs the concentration of organochlorine pesticides was higher than polychlorinated biphenyls and polybrominated diphenyl ethers, likely indicating the current use of these agricultural contaminant in the region. The highest values of total POP concentrations (males X¯ = 280 ng g⁻¹, females X¯ = 301 ng g⁻¹) were found in juvenile gulls, likely as a consequence of the incorporation of pollutants during the breeding season. Subadult and adult birds showed difference between sexes in the concentration of contaminants, with higher levels in males than females. The results highlight the need to include birds of different sex and age classes in order to better understand the variation in pollutants loads. The present study provides relevant information to improve the conservation status of the Olrog’s Gull and new insights about the environmental health of the Mar Chiquita coastal lagoon, Argentina, a MAB-UNESCO World Biosphere Reserve. However, there is a continued need for long-term monitoring programs focusing on this threatened species to understand the effects of pollutants on its population.
Afficher plus [+] Moins [-]The protection of selenium against cadmium-induced mitophagy via modulating nuclear xenobiotic receptors response and oxidative stress in the liver of rabbits Texte intégral
2021
Zhang, Linwei | Yang, Fan | Li, Yong | Cao, Huabin | Huang, Aimin | Zhuang, Yu | Zhang, Caiying | Hu, Guoliang | Mao, Yaqing | Luo, Junrong | Xing, Chenghong
Cadmium (Cd) is a harmful heavy metal that can cause many health problems, while selenium (Se) is an essential nutrient for organisms that can protect them from heavy metal-induced damage. To explore the effects of Se on Cd-induced mitophagy in the liver, forty 3-month-old New Zealand white rabbits (2–2.5 kg), half male and half female, were randomly divided into four groups: the Control group, the Se (0.5 mg/kg body weight (BW)) group, the Cd (1 mg/kg BW) group and the Se+Cd group. After 30 days, the toxicity from Cd in the liver was assessed in terms of the nuclear xenobiotic receptor (NXR) response, oxidative stress and mitophagy. It was found that Cd decreased the activities of CYP450 enzymes and antioxidant enzymes and increased the contents of malondialdehyde (MDA) and hydrogen peroxide (H₂O₂) and also increased the consumption of reduced glutathione (GSH). Moreover, the mRNA levels of NXRs (CAR, PXR, AHR and Nrf2), some mitochondrial function factors (PGC-1α, Sirt1, Sirt3, Nrf1 and TFAM) and mitochondrial fusion factors (Mfn1, Mfn2 and OPA1) were downregulated, but the mRNA levels of other mitochondrial function factors (VDAC1, Cyt C and PRDX3), mitochondrial fission factors (Fis1 and MFF) and those in the PINK1/Parkin-mediated mitophagy pathway (p62, Bnip3 and LC3) were upregulated under Cd exposure. The protein expression levels of Nrf2, SOD2, PGC-1α, PINK1 and Parkin were consistent with the mRNA expression levels in the Cd group. Se alleviated the changes in the abovementioned factors induced by Cd. In conclusion, the results indicate that Cd can cause oxidative stress in rabbit livers by inhibiting NXRs and the antioxidation response leading to mitophagy, and these harmful changes caused by Cd can be alleviated by Se.
Afficher plus [+] Moins [-]Halogenated flame retardants in wild, prey-sized mud carp from an e-waste recycling site in South China, 2006–2016: Residue dynamics and ecological risk assessment Texte intégral
2021
Wu, Jiang-Ping | Feng, Wen-Lu | Tao, Lin | Li, Xiao | Nie, You-Tian | Xu, Ya-Chun | Zeng, Yan-Hong | Luo, Xiao-Jun | Mai, Bi-Xian
The crude e-waste recycling has been regulated in China since the late 2000s; however, information on the recent levels and the ecological risks of e-waste derived contaminants such as halogenated flame retardants (HFRs) in the e-waste sites are limited. We therefore examined the concentrations of several HFRs in wild, prey-sized mud carps collected from a typical e-waste site in 2006, 2011 and 2016, to understand the exposure dynamics and ecological risk of these chemicals. Several ecological and biological parameters including δ¹⁵N, δ¹³C, body size and lipid content of the fish were also examined, to ensure an overall uniformity of the sample set among the sampling years. Among the HFRs measured, polybrominated diphenyl ethers (PBDEs) were detected at the highest concentrations (contributing >90% to ∑HFRs), followed by Dechlorane Plus (DPs), polybrominated biphenyls (PBBs), and alternative brominated flame retardants (ABFRs). The fish concentrations of ∑PBDEs, ∑PBBs and ∑DPs significantly dropped by 65%, 57% and 53% from 2006 to 2011, and 12%, 74% and 51% from 2011 to 2016, respectively; likely reflecting the positive impact of the environmental regulations on crude e-waste recycling. The ∑ABFRs concentrations were also decreased by 80% from 2006 to 2011, but increased by 127% from 2011 to 2016; suggesting possible fresh input of these novel HFRs in recent years. In addition to the changes in the HFR concentrations, contaminant profiles in the fish were also changed, possibly due to environmental degradation of the HFRs. Despite our conservative method of risk assessment, we found that PBDEs posed an important risk both for the mud carp and for piscivorous wildlife that inhabit the e-waste site.
Afficher plus [+] Moins [-]Meteorological patterns, technical validation, and chemical comparison of atmospheric dust depositions and bulk sand in the Arabian Gulf region Texte intégral
2021
Elsayed, Yehya | Kanan, Sofian | Farhat, Ahmad
This study reports seasonal variations of meteorological parameters, atmospheric dust and dust-borne heavy metals concentrations measured, over a period of two years, next to two major airports (Dubai International Airport and Abu Dhabi International Airport) in the Gulf Cooperation Council (GCC) region. On-line monitoring stations were installed at each location next to dust samplers used to frequently collect PM2.5 and PM10 on Teflon filters for metal analysis. Clear seasonal variation in meteorological parameters were identified. The particulate matter concentrations depicted from the two locations were continuously monitored. The PM2.5 concentration ranged from 50 to 100 μg/m³ on normal days but reached 350–400 μg/m³ per day during mild storms. The PM10 levels ranged between 100 and 250 μg/m³ during normal days and spiked to 750 μg/m³ during mild storms. Energy Dispersive X-Ray Analysis (EDS) revealed the presence of significant amounts of alkali and alkaline earth metals, which pose potential harm to aircraft engines. ICP analysis showed the presence of heavy and toxic metals in concentrations that may pose harm to human health. Bulk sand samples from Abu Dhabi sites showed chemical similarities to the atmospheric dust samples. The concentrations of heavy metals, PM2.5, and PM10 are at levels that require further monitoring due to their impact on human health. The two years meteorological monitoring, with the seasonal variations, provided additional regional data in the Arabian Gulf. Furthermore, the study concluded that Sand and Dust storms (SDS) occur more frequently at the northern Arabian Gulf compared to its southern region. The chemical correlation between atmospheric dust and regional desert sand suggests the localized origin of the smaller dust particles that may form by breaking apart of the ground sand grains. As a result of the ongoing urbanization in the region, it is essential to collect additional data from various locations for a longer period of time.
Afficher plus [+] Moins [-]Real-time prediction of river chloride concentration using ensemble learning Texte intégral
2021
Zhang, Qianqian | Li, Zhong | Zhu, Lu | Zhang, Fei | Sekerinski, Emil | Han, Jing-Cheng | Zhou, Yang
Real-time river chloride prediction has received a lot of attention for its importance in chloride control and management. In this study, an artificial neural network model (i.e., multi-layer perceptron, MLP) and a statistical inference model (i.e., stepwise-cluster analysis, SCA) are developed for predicting chloride concentration in stream water. Then, an ensemble learning model based on MLP and SCA is proposed to further improve the modeling accuracy. A case study of hourly river chloride prediction in the Grand River, Canada is presented to demonstrate the model applicability. The results show that the proposed ensemble learning model, MLP-SCA, provides the best overall performance compared with its two ensemble members in terms of RMSE, MAPE, NSE, and R² with values of 11.58 mg/L, 27.55%, 0.90, and 0.90, respectively. Moreover, MLP-SCA is more competent for predicting extremely high chloride concentration. The prediction of observed concentrations above 150 mg/L has RMSE and MAPE values of 9.88 mg/L and 4.40%, respectively. The outstanding performance of the proposed MLP-SCA, particularly in extreme value prediction, indicates that it can provide reliable chloride prediction using commonly available data (i.e., conductivity, water temperature, river flow rate, and rainfall). The high-frequency prediction of chloride concentration in the Grand River can supplement the existing water quality monitoring programs, and further support the real-time control and management of chloride in the watershed. MLP-SCA is the first ensemble learning model for river chloride prediction and can be extended to other river systems for water quality prediction.
Afficher plus [+] Moins [-]Treatment technologies to mitigate the harmful effects of recalcitrant fluoroquinolone antibiotics on the environ- ment and human health Texte intégral
2021
Mathur, Purvi | Sanyal, Doyeli | Callahan, Damien L. | Conlan, Xavier A. | Pfeffer, Frederick M.
Antibiotic proliferation in the environment and their persistent nature is an issue of global concern as they induce antibiotic resistance threatening both human health and the ecosystem. Antibiotics have therefore been categorized as emerging pollutants. Fluoroquinolone (FQs) antibiotics are an emerging class of contaminants that are used extensively in human and veterinary medicine. The recalcitrant nature of fluoroquinolones has led to their presence in wastewater, effluents and water bodies. Even at a low concentration, FQs can stimulate antibacterial resistance. The main sources of FQ contamination include waste from pharmaceutical manufacturing industries, hospitals and households that ultimately reaches the wastewater treatment plants (WWTPs). The conventional WWTPs are unable to completely remove FQs due to their chemical stability. Therefore, the development and implementation of more efficient, economical, convenient treatment and removal technologies are needed to adequately address the issue. This review provides an overview of the technologies available for the removal of fluoroquinolone antibiotics from wastewater including adsorptive removal, advanced oxidation processes, removal using non-carbon based nanomaterials, microbial degradation and enzymatic degradation. Each treatment technology is discussed on its merits and limitations and a comparative view is presented on the choice of an advanced treatment process for future studies and implementation. A discussion on the commercialization potential and eco-friendliness of each technology is also included in the review. The importance of metabolite identification and their residual toxicity determination has been emphasized. The last section of the review provides an overview of the policy interventions and regulatory frameworks that aid in retrofitting antibiotics as a central key focus contaminant and thereby defining the discharge limits for antibiotics and establishing safe manufacturing practices.
Afficher plus [+] Moins [-]Moxidectin toxicity to zebrafish embryos: Bioaccumulation and biomarker responses Texte intégral
2021
Muniz, Marta Silva | Halbach, Katharina | Alves Araruna, Igor Cauê | Martins, Rafael Xavier | Seiwert, Bettina | Lechtenfeld, Oliver | Reemtsma, Thorsten | Farias, Davi
Moxidectin is an antiparasitic drug belonging to the class of the macrocyclic lactones, subgroup mylbemicins. It is used worldwide in veterinary practice, but little is known about its potential environmental risks. Thus, we used the zebrafish embryo as a model system to study the potential effects of moxidectin on aquatic non-target organisms. The analyses were performed in two experimental sets: (1) acute toxicity and apical endpoints were characterized, with biomarker assays providing information on the activity levels of catalase (CAT), glutathione S-transferase (GST), lactate dehydrogenase (LDH), and acetylcholinesterase (AChE); and (2) internal concentration and spatial distribution of moxidectin were determined using ultraperformance liquid chromatography quadrupole-time-of-flight mass spectrometry (UPLC-QToF-MS) and matrix-assisted laser desorption/ionization-MS imaging (MALDI-MSi). The acute toxicity to zebrafish embryos (96 hpf) appeared mainly as a decrease in hatching rates (EC₅₀ = 20.75 μg/L). It also altered the enzymatic activity of biomarker enzymes related to xenobiotic processing, anaerobic metabolism, and oxidative stress (GST, LDH, and CAT, respectively) and strongly accumulated in the embryos, as internal concentrations were 4 orders of magnitude higher than those detected in exposure solutions. MALDI-MSi revealed accumulations of the drug mainly in the head and eyes of the embryos (72 and 96 hpf). Thus, our results show that exposure to moxidectin decreases hatching success by 96 h and alters biochemical parameters in the early life stages of zebrafish while accumulating in the head and eye regions of the animals, demonstrating the need to prioritize this compound for environmental studies.
Afficher plus [+] Moins [-]Environmental behavior and safety of polyhalogenated carbazoles (PHCZs): A review Texte intégral
2021
Ji, Chenyang | Chen, Da | Zhao, Meirong
Polyhalogenated carbazoles (PHCZs) are well-known as emergent environmental contaminants. Given their wide distribution in the environment and structural similarity with dioxins and dioxin-like chemicals (DLCs), the environmental behavior and ecological risks of these chemicals have become the major issue concerned by the governments and scientists. Since the initial report of PHCZ residues in the environment in the 1980s, over 20 PHCZ congeners with different residual levels had been identified in various environmental media all over the world. Nevertheless, researches concerning the toxicological effects of PHCZs are of an urgent need for the relatively lagging study of their ecological risks. Currently, only limited evidence has indicated that PHCZs would pose dioxin-like toxicity, including developmental toxicity, cardiotoxicity, etc; and their toxicological effects were partially consistent with AhR activation. And yet, much remains to be done to fill in the knowledge gaps of their toxicological effects. In this review, the research progresses in environmental behavior and toxicology study of PHCZs were remarked; and the lack of current research, as well as future research prospects, were discussed.
Afficher plus [+] Moins [-]Thiol-functionalized nano-silica for in-situ remediation of Pb, Cd, Cu contaminated soils and improving soil environment Texte intégral
2021
Lian, Mingming | Wang, Longfei | Feng, Qiaoqiao | Niu, Liyong | Zhao, Zongsheng | Wang, Pengtao | Song, Chunpeng | Li, Xiaohong | Zhang, Zhijun
Heavy metal contamination has been threatening the health of human beings. To decrease the bio-toxicity of heavy metals, a thiol-functionalized nano-silica (SiO₂-SH) was adopted to remediate the soil contaminated by lead (Pb), cadmium (Cd) and copper (Cu). The remediation effect of SiO₂-SH on contaminated soils was investigated by the uptake of the heavy metals into lettuce and pakchoi in pot experiment. The bio-toxicity of the SiO₂-SH was evaluated, and its immobilization mechanisms were proposed by the fraction distribution of Cd, Pb and Cu. It was found that the SiO₂-SH can significantly reduce the uptake of Cd, Pb, Cu into pakchoi by 92.02%, 68.03%, 76.34% and into lettuce by 89.81%, 43.41%, 5.76%, respectively. The chemical species analyses of Cd, Pb, Cu indicate SiO₂-SH can transform the heavy metal in acid soluble states into reducible fraction and oxidizable fraction, thereby inhibiting the extraction of heavy metals into soil solution. The concentrations of microbial biomass carbon, organic matter, and cation exchange capacity of the soil increased while the soil bulk density decreased after remediation. Those changes demonstrate that SiO₂-SH not only has no bio-toxic impact on the soil environment but also improves the soil environment, which proves the prepared SiO₂-SH is environmental-friendly. The SiO₂-SH could be a promising amendment for heavy metal contaminated soils.
Afficher plus [+] Moins [-]