Affiner votre recherche
Résultats 561-570 de 4,938
A spatiotemporal interpolation method for the assessment of pollutant concentrations in the Yangtze River estuary and adjacent areas from 2004 to 2013 Texte intégral
2019
Wang, Jiaxin | Hu, Maogui | Gao, Bingbo | Fan, Haimei | Wang, Jinfeng
Nitrogen is one of the most significant pollutants in the Yangtze River estuary (YRE), China. Reliable estimation of nitrogen concentration in the water is crucial for assessment of the water quality of the estuary. Because ocean fronts exist in the YRE, which divide water masses into different regions, it is necessary to account for the heterogeneity of the water surface when predicting nitrogen concentrations. A new geostatistical method, called spatiotemporal point mean of surface with non-homogeneity (ST-PMSN), is proposed to model the non-stationary spatiotemporal random process of nitrogen concentrations between 2004 and 2013 in the YRE. The method considers the spatiotemporal correlation of surface water nitrogen and uses information from both sides of a boundary for heterogeneous water masses. Comparing with several other interpolating methods, including spatial ordinary kriging (OK), stratified ordinary kriging (SOK), point mean of surface with non-homogeneity (P-MSN), spatiotemporal ordinary kriging (STK), and stratified spatiotemporal ordinary kriging (SSTK), the cross-validation results show that ST-PMSN has the highest accuracy, followed by SSTK, STK, P-MSN, SOK, and OK in descending order. ST-PMSN is therefore demonstrated to be effective in estimating the nitrogen pollutant concentrations in a stratified estuary. According to interpolated nitrogen concentrations in the YRE, water quality has generally deteriorated—with fluctuations—from 2004 to 2013. The average annual reduction in area of water quality of Grades I and II from 2004 to 2013 was 1.10%. At the same time, the average annual increase in area of water quality of Grades III and IV was 0.89% and that of Grade V was 0.21%. The results of this study provide a new and more accurate interpolating method for assessing the pollutant concentration in the marine and offers guidance for more precise classification of water quality in the YRE.
Afficher plus [+] Moins [-]Mitigative effects of natural and model dissolved organic matter with different functionalities on the toxicity of methylmercury in embryonic zebrafish Texte intégral
2019
Li, Dan | Xie, Lingtian | Carvan, Michael J. | Guo, Laodong
Dissolved organic matter (DOM) occurs ubiquitously in aquatic environments and plays an intrinsic role in altering the chemical speciation and toxicity of methylmercury (MeHg). However, interactions between MeHg and natural DOM remain poorly understood, especially at the functional group level. We report here the mitigative effects of three natural organic matter (NOM) and five model-DOM under different concentrations (0, 1, 3, 10, 30 and 100 mg-C/L) on the toxicity of MeHg in embryonic zebrafish (<4 h post-fertilization, hpf). NOM are those from the Mississippi River, Yukon River, and Suwannee River, while model-DOM include those containing thiosalicylic acid, L-glutathione, dextran, alginic acid, and humic acid. We selected a MeHg concentration (100 n-mol/L) that reduces the survival rate of embryos at 24 hpf by 18% and increases malformations at 72 and 96 hpf. In the presence of DOM, however, the malformation rates induced by MeHg can be mitigated to a different extent depending on DOM concentrations, specific functional groups, and/or specific components. Model DOM with aromatic thiols was the most effective at mitigating the effects of MeHg, followed by L-glutathione, carbohydrates, and humic acid. NOM also mitigated the toxicity of MeHg dependent on their composition and/or effective DOM components as characterized by fluorescence excitation-emission matrix techniques. Specifically, humic-like DOM components are more effective in reducing the MeHg toxicity in the embryonic zebrafish compared to protein-like components. Further studies are needed to elucidate the interactions between DOM and MeHg and the mitigative mechanisms at the molecular level.
Afficher plus [+] Moins [-]The global warming potential of straw-return can be reduced by application of straw-decomposing microbial inoculants and biochar in rice-wheat production systems Texte intégral
2019
Ma, Yuchun | Liu, De Li | Schwenke, Graeme | Yang, Bo
Straw-return methods that neither negatively impact yield nor bring environmental risk are ideal patterns. To attain this goal, it is necessary to conduct field observation to evaluate the environmental influence of different straw-return methods. Therefore, we conducted a 2-year field study in 2015–2017 to investigate the emissions of methane (CH₄) and nitrous oxide (N₂O) and the changes in topsoil (0–20 cm) organic carbon (SOC) density in a typical Chinese rice-wheat rotation in the Eastern China. These measurements allowed a complete greenhouse gas accounting (net GWP and GHGI) of five treatments including: FP (no straw, plus fertilizer), FS (wheat straw plus fertilizer), FB (straw-derived biochar plus fertilizer), FSDI (wheat straw with straw-decomposing microbial inoculants plus fertilizer) and CK (control: no straw, no fertilizer). Average annual SOC sequestration rates were estimated to be 0.20, 0.97, 1.97 and 1.87 t C ha⁻¹ yr⁻¹ (0–20 cm) for the FP, FS, FB and FSDI treatments respectively. Relative to the FP treatment, the FS and FSDI treatments increased CH₄ emissions by 12.4 and 17.9% respectively, but decreased N₂O emissions by 19.1 and 26.6%. Conversely, the FB treatment decreased CH₄ emission by 7.2% and increased N₂O emission by 10.9% compared to FP. FB increased grain yield, but FS and FSDI did not. Compared to the net GWP (11.6 t CO₂-eq ha⁻¹ yr⁻¹) and GHGI (1.20 kg CO₂-eq kg⁻¹ grain) of FP, the FS, FB and FSDI treatments reduced net GWP by 12.6, 59.9 and 34.6% and GHGI by 10.5, 65.8 and 37.7% respectively. In rice-wheat systems of eastern China, the environmentally beneficial effects of returning wheat straw can be greatly enhanced by application of straw-decomposing microbial inoculants or by applying straw-derived biochar.
Afficher plus [+] Moins [-]Decreased atmospheric nitrogen deposition in eastern North America: Predicted responses of forest ecosystems Texte intégral
2019
Gilliam, Frank S. | Burns, Douglas A. | Driscoll, Charles T. | Frey, Serita D. | Lovett, Gary M. | Watmough, Shaun A.
Historical increases in emissions and atmospheric deposition of oxidized and reduced nitrogen (N) provided the impetus for extensive, global-scale research investigating the effects of excess N in terrestrial and aquatic ecosystems, with several regions within the Eastern Deciduous Forest of the United States found to be susceptible to negative effects of excess N. The Clean Air Act and associated rules have led to decreases in emissions and deposition of oxidized N, especially in eastern U.S., representing a research challenge and opportunity for ecosystem ecologists and biogeochemists. The purpose of this paper is to predict changes in the structure and function of North American forest ecosystems in a future of decreased N deposition. Hysteresis is a property of a system wherein output is not a strict function of corresponding input, incorporating lag, delay, or history dependence, particularly when the response to decreasing input is different from the response to increasing input. We suggest a conceptual hysteretic model predicting varying lag times in recovery of soil acidification, plant biodiversity, soil microbial communities, forest carbon (C) and N cycling, and surface water chemistry toward pre-N impact conditions. Nearly all of these can potentially respond strongly to reductions in N deposition. Most responses are expected to show some degree of hysteresis, with the greatest delays in response occurring in processes most tightly linked to “slow pools” of N in wood and soil organic matter. Because experimental studies of declines in N loads in forests of North America are lacking and because of the expected hysteresis, it is difficult to generalize from experimental results to patterns expected from declining N deposition. These will likely be long-term phenomena, difficult to distinguish from other, concurrent environmental changes, including elevated atmospheric CO₂, climate change, reductions in acidity, invasions of new species, and long-term vegetation responses to past disturbance.
Afficher plus [+] Moins [-]Size spectra and source apportionment of fine particulates in tropical urban environment during southwest monsoon season Texte intégral
2019
Zong, Yichen | Botero, Maria L. | Yu, Liya E. | Kraft, Markus
In this study, we carried out high time-resolution measurements of particle number concentration and size distribution (5–1000 nm) in Singapore, which represents a tropical urban environment. The measurements were taken during the southwest monsoon season in 2017 using a fast-response differential mobility spectrometer at a sampling rate of 1 Hz. In the measurement, short-lived nucleation events were found prominent at early afternoon because of the abundant incoming radiation that enhances the photochemical reactions in atmosphere. For the first time in the region, a five-factor positive matrix factorization approach was applied to the size spectra data. Based on particle number concentration, two sources within nucleation mode (<30 nm) were resolved and account for 43% of total number concentration, which is higher than the available monitoring data in other big cities. Among the sources, O₃-related atmospheric photochemical reactions with peak size at 10–12 nm is a unique factor and prominent in early afternoon nucleation events. The findings of this work can serve as a baseline for assessing influence of local and cross-border airborne emissions during various seasons in the future.
Afficher plus [+] Moins [-]Non-lethal sampling of avian indicators reveals reliable geographic signals of mercury despite highly dynamic patterns of exposure in a large wetland Texte intégral
2019
Zabala, Jabi | Rodriguez-Jorquera, Ignacio A. | Orzechowski, Sophia C. | Frederick, Peter
Mercury is a global contaminant with special relevance for aquatic food webs, where biomagnification can result in strong effects on apex predators. Non-lethal sampling of tissues such as blood and feathers is often used to assess mercury risk and spatiotemporal variability of mercury exposure on avian populations. However, the assumption that samples from individuals within a population are representative of local mercury exposure underpins those approaches. While this assumption may be justified, it is rarely expressed quantitatively. Further, the stability of the tissue/exposure relationship over time or space may depend on the sampling medium used, since some tissues and age classes may be better at reflecting local or short-term changes in exposure. Here, we present analyses of mercury concentrations from three tissues (albumen, blood and feathers) of the same individual great egret (Ardea alba) nestlings from breeding colonies in the Florida Everglades collected over three consecutive years. The interaction of year and colony location explained at least 50% of the observed variation in mercury concentration in all the sampled tissues. Annual colony-wide average Hg concentrations in any of the sampled tissues correlated with average Hg concentrations in the other two tissues from the same colony (R² > 0.53 in every case), while concentrations in albumen, blood and feathers from the same individual correlated poorly (R² < 0.23 in every case). We suggest that despite high variation between and within individuals of the same colony, annual colony-averaged mercury concentrations in albumen, nestling blood or feathers can be representative indicators of annual geographic differences in mercury exposure. These results support the use of non-lethal sampling of nestling tissues to reflect local mercury exposure over large spatial scales.
Afficher plus [+] Moins [-]Source apportionment of VOCs and their impact on air quality and health in the megacity of Seoul Texte intégral
2019
Song, Sang-Keun | Shon, Zang-Ho | Kang, Yoon-Hee | Kim, Ki Hyun | Han, Seung-Beom | Kang, Min-sŏng | Bang, Jin-Hee | Oh, Inbo
The source apportionment of volatile organic compounds (VOCs) was examined using receptor models (positive matrix factorization and chemical mass balance) and a chemical transport model (CTM). The receptor model-based analysis was performed using the datasets collected from four different sites from the megacity of Seoul during the years 2013–2015. The contributions of VOC emission sources to ozone (O₃) and PM₂.₅ concentrations and the subsequent health effects in the study area were also assessed during a photochemically active period (June 2015) using a three-dimensional CTM, Community Multi-scale Air Quality (CMAQ), and the Environmental Benefits Mapping and Analysis Program (BenMAP). The solvent use and the on-road mobile emission sources were found to exert dominant controls on the VOC levels observed in the target city. VOCs transported from regions outside of Seoul accounted for a significant proportion (up to approximately 35%) of ambient VOC levels during the study period. The solvent use accounted for 3.4% of the ambient O₃ concentrations during the day (daily mean of 2.6%) and made insignificant contributions to PM₂.₅ (<1%) during the simulation period. Biogenic VOC made insignificant contributions to O₃ (<1%) and a small contribution to PM₂.₅ during the day (5.6% with a daily mean of 2.4%). The number of premature deaths attributed indirectly (O₃ and PM₂.₅ formations via the oxidation of VOCs) to solvent use is expected to be significant.
Afficher plus [+] Moins [-]Toxic responses of metabolites, organelles and gut microorganisms of Eisenia fetida in a soil with chromium contamination Texte intégral
2019
Tang, Ronggui | Li, Xiaogang | Mo, Yongliang | Ma, Yibing | Ding, Changfeng | Wang, Junsong | Zhang, Taolin | Wang, Xingxiang
The toxic sensitivity in different physiological levels of chromium (Cr) contaminated soils with environmentally equivalent concentrations (EEC) was fully unknown. The earthworm Eisenia fetida was exposed to a Cr-contaminated soil at the EEC level (referred to as Cr-CS) to characterize the induced toxicity at the whole body, organ, tissue, subcellular structure and metabolic levels. The results showed that the survival rate, weight and biodiversity of the gut microorganisms (organ) had no significant difference (p > 0.05) between control and Cr-CS groups. Qualitative histopathological and subcellular evaluations from morphology showed earthworms obvious injuries. The organelle injuries combined with the metabolic changes provided additional evidence that the Cr-CS damaged the nucleus and probably disturbed the nucleic acid metabolism of earthworms. 2-hexyl-5-ethyl-3-furansulfonate, dimethylglycine, betaine and scyllo-inositol were sensitive and relatively quantitative metabolites that were recommended as potential biomarkers for Cr-CS based on their significant weights in the multivariate analysis model. In addition, the relative abundance of Burkholderiaceae, Enterobacteriaceae and Microscillaceae of the earthworm guts in the Cr-CS group significantly increased, particularly for Burkholderiaceae (increased by 13.1%), while that of Aeromonadaceae significantly decreased by 5.6% in contrast with the control group. These results provided new insights into our understanding of the toxic effects of the EEC level of Cr contaminated soil from different physiological levels of earthworms and extend our knowledge on the composition and sensitivity of the earthworm gut microbiota in Cr contaminated soil ecosystems. Furthermore, these toxic responses from gut microorganisms to metabolites of earthworms provided important data to improve the adverse outcome pathway and toxic mechanism of the Cr-CS if the earthworm genomics and proteomics would be also gained in the future.
Afficher plus [+] Moins [-]Transcriptional responses to starvation stress in the hepatopancreas of oriental river prawn Macrobrachium nipponense Texte intégral
2019
Li, Fajun | Fu, Chunpeng | Xie, Yannian | Wang, Aili | Li, Jianyong | Gao, Junping | Cui, Xinyu
Various crustaceans are farmed using aquaculture, and food deprivation or fasting can occur due to changing of environmental or management strategies. However, the molecular mechanisms underlying responses to starvation in crustaceans remain unclear. To address this, 12 hepatopancreas transcriptomes were compared for oriental river prawn (Macrobrachium nipponense) from four fasting stages (0, 7, 14 and 21 d). Gene Ontology functional annotation and Kyoto Encyclopaedia of Genes and Genomes pathway enrichment analysis of differentially expressed genes were subsequently performed. During the early stages of starvation (0–7 d), drug metabolism via the cytochrome P450 pathway and metabolism of xenobiotics by the cytochrome P450 pathway were enriched, suggesting that they metabolised compounds generated under starvation stress. As starvation proceeded (7–14 d), the retinol (vitamin A) metabolism pathway was activated, based on three up-regulated genes (CYP3, ADH and UGT), along with the two p450 pathways. Meanwhile, vitamin A was gradually consumed. As acute starvation was reached (14–21 d), vitamin A deficiency decreased the mRNA expression levels of IGF-I that is involved in the mTOR signalling pathway, which ultimately affected the growth and development of M. nipponense. Our results implicate drug/xenobiotic metabolism by cytochrome P450s in adaptation to starvation stress. Furthermore, metabolic cascades (CYP and retinol pathways) and growth (mTOR signalling) pathways are clearly triggered in crustaceans during starvation. The findings expand our understanding of the genes associated with hepatopancreas functioning in M. nipponense, and the underlying molecular mechanisms that govern the responses of crustaceans to starvation stress.
Afficher plus [+] Moins [-]Application of a microalga, Scenedesmus obliquus PF3, for the biological removal of nitric oxide (NO) and carbon dioxide Texte intégral
2019
Ma, Shanshan | Li, Da | Yu, Yanling | Li, Dianlin | Yadav, Ravi S. | Feng, Yujie
Nitrogen oxide (NOx) emissions from flue gas lead to a series of environmental problems. Biological removal of Nitrogen oxide (NOx) from flue gas by microalgae is a potential approach for reducing the problems caused by these emissions. However, few microalgal strains are reported to remove NOx from flue gas. Here, a microalga strain PF3 (identified as Scenedesmus obliquus), which can remove NOx and fix CO₂ from flue gas is isolated. The tolerance of Scenedesmus obliquus PF3 to CO₂, NO, SO₂ and its adaptabilities to environmental factors (pH and temperature), and its performance in the removal of NO and CO₂ are investigated. Scenedesmus obliquus PF3 showed biomass accumulation when sparged with 15% CO₂ or 500 ppm NO or 50 ppm SO₂, and bisulfite less than 2 mM showed no toxicity to Scenedesmus obliquus PF3. Additionally, PF3 grew well in a wide range of pH and temperatures from 4.5 to 10.5 and 15 °C–30 °C, respectively. When sparged with simulated flue gas (100 ppm NO, 10% CO₂, (N₂ as balance gas)), the microalgae culture system removed NO and CO₂ at a rate of 2.86 ± 0.23 mg L⁻¹ d⁻¹ and 1.48 ± 0.12 g L⁻¹ d⁻¹, respectively, where up to 96.9 ± 0.03% (2.77 ± 0.08 mg L⁻¹ d⁻¹) and 87.7 ± 6.22% (1.29 ± 0.01 mg L⁻¹ d⁻¹) of the removed NO and CO₂, respectively, were assimilated in algal biomass. These results suggest that Scenedesmus obliquus PF3 is a promising candidate for NOx removal and carbon fixation of flue gas.
Afficher plus [+] Moins [-]