Affiner votre recherche
Résultats 5691-5700 de 6,560
Health risks from trace elements in muscles of some commonly available fish in Australia and India Texte intégral
2020
Rahman, Mohammad Mahmudur | Shehzad, Muhammad Tahir | Nayak, Amaresh Kumar | Sharma, Shruti | Yeasmin, Marjana | Samanta, Srikanta | Correll, Ray | Naidu, R.
The levels of trace elements (As, Hg, Cr, Cd, Pb, Co, Ni, Cu, Mn and Zn) in commercially important fish species sampled from fish markets of Adelaide, Australia; canned fish from South Australian supermarkets; and fish markets of West Bengal, India were determined by inductively coupled plasma mass spectrometry (ICP-MS) after microwave digestion. Mercury was determined by using triple quadrupole ICP-MS. The accuracy of the methods was assessed with a certified standard reference material (NRCC-DORM-3 dogfish protein), and the results were compared with values reported in the literature. The results indicated considerable variations in the accumulation of trace elements among the fish species. The relationship between species with respect to trace element concentrations was examined using cluster analysis, which showed Indian fish species forming distinct groups from the others. Other than As in sardines, whiting and snapper and Hg in swordfish and snapper, the trace element concentrations were within permissible limits recommended by various standards. Based on the estimated daily intake (EDI), fish samples analysed in this study can be considered safe for human consumption as per the recommended daily dietary allowance limit fixed by various agencies. Continuous monitoring and assessments of fish metal(loid) content are needed to generate more data and safeguard human health.
Afficher plus [+] Moins [-]Elaboration of novel polyaniline@Almond shell biocomposite for effective removal of hexavalent chromium ions and Orange G dye from aqueous solutions Texte intégral
2020
Hsini, Abdelghani | Essekri, Abdelilah | Aarab, Nouh | Laabd, Mohamed | Ait Addi, Abdelaziz | Lakhmiri, Rajae | Albourine, Abdallah
A novel polyaniline@Almond shell (PANI@AS) biocomposite was synthesized via facile in situ chemical polymerization method. The as-synthesized adsorbent was characterized using various analytical techniques such as Fourier transform infrared spectroscopy (FTIR), X-ray energy dispersive spectroscopy (EDS), scanning electron microscopy (SEM), and potentiometric titration. A batch adsorption system was applied with the aim of investigating as-synthesized adsorbent ability to remove Cr(VI) ions and Orange G (OG) textile dye from aqueous solutions. Obtained results revealed that adsorption process was strongly depended upon the physicochemical parameters. The adsorption of Cr(VI) and OG dye onto PANI@AS was better described by the pseudo second-order-kinetic model and followed the Freundlich isotherm model. The maximum uptakes were 335.25 for Cr(VI) and 190.98 mg g⁻¹ for OG dye. We further evaluated that PANI@AS biocomposite could be regenerated easily with NaOH solution and efficiently reused for Cr(VI) and OG dye removal from aqueous media. Thus, these results indicated the potential practical application of PANI@AS biocomposite for wastewater treatment.
Afficher plus [+] Moins [-]Integrating alum sludge with waste-activated sludge in co-conditioning and dewatering: a case study of a city in south France Texte intégral
2020
Ren, Baiming | Lyczko, Nathalie | Zhao, Yaqian | Nzihou, Ange
The unique geographical location of waterworks and wastewater treatment plant (WWTP) in Graulhet (France) profited the environmental resource integration and “Circular Economy.” Alum sludge from a local waterworks was introduced to co-conditioning and dewatering with waste-activated sludge from a nearby WWTP to examine the role of the alum sludge in improving the dewaterability of the mixed sludge. Experiments demonstrated that the optimal mixing ratio was 1:1 (waste-activated sludge/alum sludge, v/v). Alum sludge has been shown to beneficially enhance mixed sludge dewaterability, by decreasing both the specific resistance to filtration (SRF) and the capillary suction time (CST). Moreover, the optimal polymer (Sueprfloc-492HMW) dose for the mixed sludge (mix ratio 1:1) was 200 mg/L, highlighting a huge savings (14 times) in polymer addition without alum sludge involvement. In addition, cost-effective analysis of its potential full-scale application has demonstrated that the initial investment could be returned in 11 years. The co-conditioning and dewatering strategy can be viewed as a “win-win” strategy for the Graulhet, France, water and wastewater industry. Graphical abstract
Afficher plus [+] Moins [-]Impact of selenium, zinc and their interaction on key enzymes, grain yield, selenium, zinc concentrations, and seedling vigor of biofortified rice Texte intégral
2020
Ei, Hla Hla | Zheng, Tengda | Farooq, Muhammad Umer | Zeng, Rui | Su, Yang | Zhang, Yujie | Liang, Yuanke | Tang, Zhichen | Ye, Xiaoying | Jia, Xiaomei | Zhu, Jianqing
Selenium (Se) is an essential micronutrient and important component of oxidase which protects cell membranes, eliminate the role of free radicals in the human body. Se is necessary for low Se rice genotypes and Se deficient areas. Zinc (Zn) is a micro-battalion that affects the growth, development, aging, drought resistance, disease resistance, and many other aspects for rice. The effects of Se and Zn fertilization on Se and Zn concentrations were evaluated including the response of superoxide dismutase (SOD), catalase (CAT) enzymes activity, and grain yield under single Se, Zn, and combined Se-Zn application using R725 rice variety in pot experiment with 8 treatments (0, Zn5, Zn10, Zn15, Se1, Zn5 + Se1, Zn10 + Se1, and Zn15 + Se1) mg/kg of soil and three replications. Moreover, germination% and seedling growth of resulted seeds from this experiment were evaluated for the agronomical benefit of farmers. The results revealed that Se and Zn had a cumulative effect on each other, but more Se increase was activated than Zn under the combined Se-Zn application. Zinc application had the small effect on Zn concentration in the different fractions but the positive effect on carotenoids and the yield (both applied alone and in combination with Se). Single Se application resulted in a positive effect on Zn accumulation in grain and husk with the high effectiveness of Se accumulation and loss during processing. Combined Se-Zn application had positive effect on carotenoids, CAT, grain yield, and total dry matter. Moreover, single Zn and combined Se-Zn application had a positive effect on germination% and seedling growth. Agronomic biofortification with combined Se-Zn supply provided both agronomic and nutritional benefits for rice in the current pot trail. However, as Se preferably accumulated in the edible part as compared to Zn, 1 mg Se/kg fertilization was unsafe for edible purposes according to the national standard of China (0.04–0.3 mg/kg) but could be recommended as medicine.
Afficher plus [+] Moins [-]Ultraviolet photolysis of metformin: mechanisms of environmental factors, identification of intermediates, and density functional theory calculations Texte intégral
2020
Lin, Wenting | Zhang, Xiaohan | Li, Ping | Tan, Yongzhen | Ren, Yuan
As a commonly used anti-diabetic drug, metformin (MEF) is frequently detected in different water bodies which pose a potential threat to human health and the ecological environment. In this study, oxidative degradation of MEF under ultraviolet (UV) light was studied, and its influencing factors, photolysis mechanism, and intermediates identification carried out as well. The results showed that the hydroxyl radical contributed 73% during the 6 h MEF photolysis process among the reactive oxygen species (ROS). In addition, triplet excited-state organic matter and singlet oxygen also played a role in the photolysis process. The reaction rates of hydroxyl radical and singlet oxygen with MEF are (6.45 ± 0.4) × 10⁹ and (5.4 ± 0.7) × 10⁶ L·(mol s)⁻¹, respectively. By calculating the light screening effect of environmental factors, it is found that the presence of NO₃⁻ and Cl⁻ had a greater excitation effect on ROS than the screening effect, and generally promoted the photolysis rates of MEF from 90.3 to 193.5% and from 16.1 to 80.6% during the 6-h reaction process, respectively. For bicarbonate and fulvic acid, the light screening effects were dominant and inhibited photolysis rates by 10–52% and 13–71%, respectively. The results demonstrated that the photoreactivity of environmental factors in water is the cause of the different photodegradation rates of MEF. The oxidative degradation product of MEF under UV light was detected by UPLC/Q-TOF as methylbiguanide (MBG), 2,4-diamino-1,3,5-triazine (2,4-DAT), biguanide (BGN), 1,1-dimethylguanidine (1,1-DiMBG), 4-amino-2-imino-1-methyl-1,2-dihydro-1, 3,5-triazine (4,2,1-AIMT), and 2-amino-4-methylamino-1,3,5-triazine (2,4-AMT). The result which showed that the primary sites of ∙OH attacked is consistent with that of density functional theory calculation. Graphical abstract
Afficher plus [+] Moins [-]Dynamic analysis of green investment decision of manufacturer Texte intégral
2020
Zhu, Xiaowen | Du, Jianguo | Boamah, Kofi Baah | Long, Xingle
With the continuous development of green manufacturing concept, more and more enterprises attempt to increase their green investment to promote the utilization of resources. In order to help enterprises make the optimal green investment decision, firstly, this paper constructs a duopoly competition game model based on the manufacturer’s limited rationality. Then, the Nash equilibrium solution of the system is discussed by using the reverse induction method. Finally, the system is simulated to study the green input decision and the impact of green input cost on the manufacturer’s output and profit. By adding external control signals, the chaos state of duopoly competition game model is restrained. The results show that the manufacturer’s optimal green investment portfolio lies in the stable region of Nash equilibrium. Secondly, in the duopoly competition game model, when the initial value of green input adjustment rate and cost changes slightly, the evolution of production and profit of manufacturing enterprises will be greatly different. Thirdly, the study revealed that the addition of external control signals can effectively control the chaotic situation of the market and subsequently restore the order of the participants and the market. Therefore, our research provides a reference for enterprises to make green input decision; improve the efficiency and rationality of enterprise management and further promote the green development of enterprises.
Afficher plus [+] Moins [-]Facile synthesis of ZnO-SnO2 anchored ZIF-8 nanocomposite: a potential photocatalyst Texte intégral
2020
Chandra, Ramesh | Nath, Mala
For the first time, ZnO-SnO₂ nanocomposite has been anchored (ZS@Z) on ZIF-8 (zeolitic imidazolate framework) surface and encapsulated (ZS@Z1, ZS@Z2 and ZS@Z3) within ZIF-8 matrix during the in situ synthesis of ZIF-8. ZnO-SnO₂ nanocomposites were synthesized in various molar ratio of Zn and Sn, i.e. 1:1, 2:8, 4:6, 6:4 and 8:2 (abbreviated as ZS-11, ZS-28, ZS-46, ZS-64 and ZS-82) using sol-gel and by grinding method (abbreviated as ZS-A, ZS-B, ZS-C, ZS-D and ZS-E). As-synthesized ZnO-SnO₂ nanocomposites have been well characterized using various spectroscopic techniques. Further, ZS-E nanocomposite was succesfully anchored and encapsulated within ZIF-8 due to its good photocatalytic activity. Morphology of ZnO-SnO₂ nanocomposites and their composites (ZS@Z, ZS@Z1, ZS@Z2 and ZS@Z3) was ensured by SEM (scanning electron microscopy) and TEM (transmission electron microscopy) images. The lowering of band gap of ZIF-8 from 5.2 to 3.25/3.79 eV confirmed the proper anchored ZnO-SnO₂@ZIF-8. Moreover, XPS analysis was also performed for the analysis of elemental composition of composites. In order to validiate thier photocatalytic application, adsorption capacity and photodegradation efficiency have been examined using methylene blue (MB) as model pollutant. It has been found that 10 mg of ZnO-SnO₂ nanocomposite (ZS-E) exhibits maximum photodegradation efficiency (58.68%) towards MB ([MB] = 1.6 mg L⁻¹) at pH = 7.89 while ZS@Z, ZS@Z1, ZS@Z2 and ZS@Z3 composites (10 mg, 0.5 mg mL⁻¹) can degrade off 100%, 93%, 97% and 92% MB, respectively. Hence, ZS@Z, ZS@Z1, ZS@Z2 and ZS@Z3 composites exhibit enhanced photodegradation efficiency as compared to ZIF-8 and ZnO-SnO₂ nanocomposites and can be used for water remediation.
Afficher plus [+] Moins [-]Evaluation of phytotoxicity, cytotoxicity, and genotoxicity of ZnO nanoparticles in Vicia faba Texte intégral
2020
Youssef, Mohamed S. | Elamawi, Rabab M.
Due to the accelerating use of manufactured nanomaterials, more research is needed to define their impact on plants. The present investigation aimed at evaluating the effect of different levels (0.0, 10, 25, 50, and 100 mg/L) of ZnO nanoparticles (NPs) on Vicia faba during seed germination and seedling establishment. Additionally, V. faba root meristems were used as a model to monitor the cytotoxic and genotoxic effects resulting from exposure to ZnO NPs. The influence of ZnO NPs on three isoenzyme systems, peroxidase, α, and β esterase, was also evaluated using native-PAGE. Our results showed that lower concentrations of ZnO NPs (especially 10 and 25 mg/L) enhanced seed germination and improved seedling growth, while higher concentrations (100 and 200 mg/L) resulted in phytotoxicity. Cytological investigations of ZnO NPs-treated V. faba root cells denoted the clastogenic and aneugenic nature of ZnO NPs. Differential increase in mitotic index and significant alterations in cell cycle were observed upon exposure to ZnO NPs. High concentrations of ZnO NPs markedly induced chromosomal aberration, micronuclei, and vacuolated nuclei formation. Chromosomal breakage, chromosomal bridges, ring chromosomes, laggard chromosomes, and stickiness were also observed at a higher rate. The PAGE analysis showed that ZnO NPs treatments altered the expression patterns of all studied enzyme systems. Collectively, results from this work will help to further understand the phytotoxic effects of nanomaterials.
Afficher plus [+] Moins [-]Elevated exposure to polycyclic aromatic hydrocarbons (PAHs) may trigger cancers in Pakistan: an environmental, occupational, and genetic perspective Texte intégral
2020
Rehman, Muhammad Yasir Abdur | Taqi, Malik Mumtaz | Hucheina, Imarāna | Nasir, Jawad | Rizvi, Syed Hussain Haider | Syed, Jabir Hussain
Polycyclic aromatic hydrocarbons (PAHs) are carcinogenic compounds which are emitted through incomplete combustion of organic materials, fossil fuels, consumption of processed meat, smoked food, and from various industrial activities. High molecular mass and mobility make PAHs widespread and lethal for human health. A cellular system in human detoxifies these toxicants through specialized enzymatic machinery called xenobiotic-metabolizing (CYP450) and phase-II (GSTs) enzymes (XMEs). These metabolizing enzymes include cytochromes P450 family (CYP1, CYP2), glutathione s-transferases, and ALDHs. Gene polymorphisms in XMEs encoding genes can compromise their metabolizing capacity to detoxify ingested carcinogens (PAHs etc.) that may lead to prolong and elevated exposure to ingested toxicants and may consequently lead to cancer. Moreover, PAHs can induce cancer through reprograming XMEs’ gene functions by altering their epigenetic markers. This review article discusses possible interplay between individual’s gene polymorphism in XMEs’ genes, their altered epigenetic markers, and exposure to PAHs in cancer susceptibility in Pakistan.
Afficher plus [+] Moins [-]Energy recovery from waste printed circuit boards using microwave pyrolysis: product characteristics, reaction kinetics, and benefits Texte intégral
2020
Huang, Yu-Fong | Lo, Shang-Lien
Energy recovery from waste printed circuit boards (PCBs) was carried out by using microwave pyrolysis. According to thermogravimetric analysis, the maximum weight loss rate of waste PCBs occurred at 323 °C. When waste PCBs was heated under microwave irradiation at 300 W, the temperature can be reached within 10 min. Compared with conventional pyrolysis, microwave pyrolysis can provide higher weight loss of waste PCBs by 3–5 wt%. Microwave pyrolysis is helpful for the delamination of waste PCBs. Almost 71% of the gaseous product can be directly used as a fuel or converted into other forms of energy. Microwave pyrolysis can produce more HBr than conventional pyrolysis by approximately 17%. The main components of liquid product were phenols and phenyls. The overall energy recovery from waste PCBs using microwave pyrolysis can be 62%. According to kinetic analysis, it would need 20 min of processing time to decompose the combustible fraction of waste PCBs at 300 W. The maximum processing capacity of the microwave pyrolysis system for waste PCBs can be 1.36 kg, with the energy production of 2710 kJ. Furthermore, the pyrolyzed PCBs can be further processed to recycle valuable metals. Therefore, microwave pyrolysis of waste PCBs can be a complete and effective circular economy system to create high energy and economic benefits.
Afficher plus [+] Moins [-]