Affiner votre recherche
Résultats 571-580 de 4,013
Current status and temporal trend of heavy metals in farmland soil of the Yangtze River Delta Region: Field survey and meta-analysis Texte intégral
2016
Shao, Diwei | Zhan, Yu | Zhou, Wenjun | Zhu, Lizhong
While the spatial distributions of heavy metals in farmland soil of China have been comprehensively delineated, their temporal trends are rarely investigated but are important for environmental risk management. In this study, the current status and temporal trends of heavy metals in the farmland soil of Yangtze River Delta (YRD) were evaluated through field survey and meta-analysis. The field survey conducted in 2014 showed that the concentrations of Cd, Pb, Cu, Zn, and Ni in the farmland topsoil were 0.23 ± 0.14, 37.63 ± 15.60, 25.83 ± 41.62, 88.38 ± 43.30, and 29.21 ± 12.41 mg kg−1 (mean ± standard deviation), respectively. The heavy metals showed relatively higher concentrations on the borders among Zhejiang, Jiangsu, and Shanghai. In the meta-analysis, we selected 68 published studies related to heavy metal pollution in farmland topsoil of YRD from 2000 to the year (2014) when the field survey was conducted. The results show an increasing trend for Cd (p < 0.05; 0.0081 mg kg−1 year−1), a decreasing trend for Cu (p < 0.05; -0.80 mg kg−1 year−1), and no significant trend for Pb (p = 0.155), Zn (p = 0.746), and Ni (p = 0.305). The increasing rate of Cd from the meta-analysis is consistent with the rate (0.0013 mg kg−1 year−1) derived from the mass balance calculation for Cd, where atmospheric deposition originated from intensive coal combustion is considered as the main source of Cd in the topsoil. The decreasing trend of Cu is likely due to largely reduced application of copper-based agrochemicals. Environmental regulation and soil remediation are needed to protect food safety and ecosystem from heavy metal pollution, especially Cd.
Afficher plus [+] Moins [-]Characterization of the particulate matter and relationship between buccal micronucleus and urinary 1-hydroxypyrene levels among cashew nut roasting workers Texte intégral
2016
de Oliveira Galvão, Marcos Felipe | de Queiroz, Jana Dara Freires | Duarte, Ediclê de Souza Fernandes | Hoelzemann, Judith Johanna | André, Paulo Afonso de | Saldiva, Paulo H. N. (Paulo Hilário Nascimento) | Menezes Filho, José Antônio | Batistuzzo de Medeiros, Silvia Regina
The present study is the first assessment of occupational risk associated with artisanal cashew nut roasting using exposure and effect biomarkers, as well as a characterization and dispersion analysis of the released particulate matter (PM). A real-time particle monitor was used to quantify PM1.0, PM2.5 and PM10. Furthermore, the PM was sampled using a Handi-vol sampler, and the physicochemical characteristics were determined by SEM-EDS analysis. Trajectories, dispersion and deposition of the emitted material were calculated using the NOAA-HYSPLIT model. Urinary 1-hydroxypyrene (1-OHP) levels were analyzed by HPLC. DNA damage, chromosomal instability and cell death were measured by a buccal micronucleus cytome assay (BMCyt). The PM concentrations for all measurements in the exposed area were higher than in the non-exposed area. SEM-EDS analyses exhibited a wide variety of particles, and K, Cl, S and Ca biomass burning tracers were the major inorganic compounds. In addition, atmospheric modeling analysis suggested that these particles can reach regions farther away than 40 kilometers. Occupational polycyclic aromatic hydrocarbon exposure was confirmed by increases in 1-OHP levels in cashew nut workers. Frequencies of BMCyt biomarkers of genotoxicity (micronuclei and nuclear bud) and cytotoxicity (pyknosis, karyolysis, karyorrhexis and condensed chromatin) were higher in the exposed group compared with the controls. The influence of factors, such as age, on the micronuclei frequencies was demonstrated, and a correlation between 1-OHP and micronuclei was observed. To the best of our knowledge, no other study has demonstrated a correlation between these types of biomarkers. The use of exposure (1-OHP) and effect (BMCyt) biomarkers were therefore efficient in assessing the occupational risk associated with artisanal cashew nut roasting, and the high rates of PM2.5 are considered to be a potential contributor to this effect.
Afficher plus [+] Moins [-]Atmospheric occurrence and gas-particle partitioning of PBDEs at industrial, urban and suburban sites of Thessaloniki, northern Greece: Implications for human health Texte intégral
2016
Besis, Athanasios | Voutsa, Dimitra | Samara, Constantini
Air samples were collected during the cold and the warm period of the year 2012 and 2013 at three sites in the major Thessaloniki area, northern Greece (urban-industrial, urban-traffic and urban-background) in order to evaluate the occurrence, profiles, seasonal variation and gas/particle partitioning of polybrominated diphenyl ethers (PBDEs). The mean total concentrations of particle phase ∑12PBDE in the cold season were 28.7, 19.5 and 3.87 pg m−3 at the industrial, urban-traffic and urban-background site, respectively, dropping slightly in the warm season (23.7, 17.5 and 3.14 pg m−3), respectively. The corresponding levels of gas-phase ∑12PBDE were 14.4, 7.15 and 4.73 pg m−3 in the cold season and 21.2, 11.1 and 6.27 pg m−3 in the warm season, respectively. In all samples, BDE-47 and BDE-99 were the dominant congeners. Absorption of PBDEs in the organic matter of particles appeared to drive their gas/particle partitioning, particularly in the cold season. The estimated average outdoor workday inhalation exposure to ∑12PBDE in the cold and the warm period followed the order: industrial site (288 and 299 pg day−1) > urban-traffic site (178 and 191 pg day−1) > urban-background site (58 and 63 pg day−1). The exposures to BDE-47, BDE-99, BDE-153 and ∑3PBDE via inhalation, for children outdoor worker and seniors were several orders of magnitude lower than their corresponding oral RfD values.
Afficher plus [+] Moins [-]Associations of prenatal exposure to five chlorophenols with adverse birth outcomes Texte intégral
2016
Guo, Jianqiu | Wu, Chunhua | Lv, Shenliang | Lu, Keng | Feng, Chao | Qi, Xiaojuan | Liang, Weijiu | Chang, Xiuli | Xu, Hao | Wang, Guoquan | Zhou, Zhijun
Exposures to chlorophenols (CPs) have been linked with adverse health effects on wildlife and humans. This study aimed to evaluate prenatal exposure to five CP compounds using maternal urinary concentrations during pregnancy and the potential associations with birth outcomes of their infants at birth. A total of 1100 mother-newborn pairs were recruited during June 2009 to January 2010 in an agricultural region, China. Urinary concentrations of five CPs from dichlorophenol (DCP) to pentachlorophenol (PCP), namely, 2,5-DCP, 2,4-DCP, 2,4,5-trichlorophenol (2,4,5-TCP), 2,4,6-TCP and PCP, were measured using large-volume-injection gas chromatography-tandem mass spectrometry (LVI-GC-MS-MS), and associations between CP levels and weight, length as well as head circumference at birth were examined. Median urinary creatinine-adjusted concentrations of 2,5-DCP, 2,4-DCP, 2,4,5-TCP, 2,4,6-TCP and PCP were 3.34 μg/g, 1.03 μg/g, < LOD, 1.78 μg/g and 0.39 μg/g creatinine, respectively. We found lower birth weight 30 g [95% confidence interval (CI): −57, −3; p = 0.03] for per SD increase in log10-transformed concentrations of 2,4,6-TCP and lower birth weight 37 g (95% CI: −64, −10; p = 0.04) for PCP, respectively. Similarly, head circumference decrease in associations with creatinine-corrected 2,4,6-TCP and PCP concentrations were also achieved. Considering sex difference, the associations of lower birth weight were only found among male neonates, while head circumference was associated with 2,4-DCP and 2,5-DCP only found among female neonates. This study showed significant negative associations between CPs exposure and reduction in neonatal anthropometric measures. The biological mechanisms concerning CPs exposure on fetal growth deserved further investigations.
Afficher plus [+] Moins [-]Active biomonitoring for assessing effects of metal polluted sediment resuspension on gammarid amphipods during fluvial traffic Texte intégral
2016
Prygiel, E. | Billon, G. | François, A. | Dumoulin, D. | Chaumot, A. | Geffard, O. | Criquet, J. | Prygiel, J.
The resuspension of polluted sediments by boat traffic could release substantial amounts of metals to the water column, affecting at the same time their bioavailability. In order to characterize the impact of sediment resuspensions on biota, caged amphipods have been deployed on three different channelized watercourses in Northern France. Firstly, the biological responses of transplanted freshwater gammarid amphipods, Gammarus fossarum, described by trace metal accumulation, feeding and reproduction activities were quite similar for the three water courses despite the differences of metal contamination and navigability. Secondly, the concentrations of metals accumulated in gammarids never exceeded the contamination thresholds previously defined for Co, Cu, Cr and Zn. Values were in the same order of magnitude whatever the studied site despite: (i) large differences noticed in the sediment quality and (ii) some concentrations in the overlying waters exceeding the Environmental Quality Standards (EQS) defined by the Water Framework Directive. Conversely, Pb was highly bioaccumulated with values systematically exceeding the threshold value whatever the site. Therefore, the impact of navigation cannot be proved and the difference between the 3 monitoring periods is rather attributed to environmental variability, probably linked to the seasonality. Moreover, this study also confirms that organisms sampled from a local population in the vicinity of the three studied watercourses could be used as test organisms, leading to similar results than the ones obtained with reference gammarids initially used for developing all the biological responses. This would simplify and then promote the development of studies based on gammarid amphipod, G. fossarum, as bioindicators.
Afficher plus [+] Moins [-]Sequential biodegradation of complex naphtha hydrocarbons under methanogenic conditions in two different oil sands tailings Texte intégral
2016
Mohamad Shahimin, Mohd Faidz | Siddique, Tariq
Methane emissions in oil sands tailings ponds are sustained by anaerobic biodegradation of unrecovered hydrocarbons. Naphtha (primarily C6–C10; n- iso- and cycloalkanes) is commonly used as a solvent during bitumen extraction process and its residue escapes to tailings ponds during tailings deposition. To investigate biodegradability of hydrocarbons in naphtha, mature fine tailings (MFT) collected from Albian and CNRL tailings ponds were amended with CNRL naphtha at ∼0.2 wt% (∼2000 mg L−1) and incubated under methanogenic conditions for ∼1600 d. Microbial communities in both MFTs started metabolizing naphtha after a lag phase of ∼100 d. Complete biodegradation/biotransformation of all n-alkanes (except partial biodegradation of n-octane in CNRL MFT) followed by major iso-alkanes (2-methylpentane, 3-methylhexane, 2- and 4-methylheptane, iso-nonanes and 2-methylnonane) and a few cycloalkanes (derivatives of cyclopentane and cyclohexane) was observed during the incubation. 16S rRNA gene pyrosequencing showed dominance of Peptococcaceae and Anaerolineaceae in Albian MFT and Anaerolineaceae and Syntrophaceae in CNRL MFT bacterial communities with co-domination of Methanosaetaceae and “Candidatus Methanoregula” in archaeal populations during active biodegradation of hydrocarbons. The findings extend the known range of hydrocarbons susceptible to methanogenic biodegradation in petroleum-impacted anaerobic environments and help refine existing kinetic model to predict greenhouse gas emissions from tailings ponds.
Afficher plus [+] Moins [-]Current status and historical variations of DDT-related contaminants in the sediments of Lake Chaohu in China and their influencing factors Texte intégral
2016
Kang, Lei | He, Qi-Shuang | He, Wei | Kong, Xiang-Zhen | Liu, Wen-Xiu | Wu, Wen-Jing | Li, Yi-Long | Lan, Xin-Yu | Xu, Fu-Liu
The temporal-spatial distributions of DDT-related contaminants (DDXs), including DDT (dichlorodiphenyltrichloroethane), DDE (dichlorodiphenyldichloroethylene) and DDD (dichlorodiphenyldichloroethane), in the sediments of Lake Chaohu and their influencing factors were studied. p,p-DDE and p,p-DDD were found to be the two dominant components of DDXs in both surface and core sediments. The parent DDT compounds were still detectable in sediment cores after the late 1930s. Historical usage of technical DDT was identified as the primary source of DDXs in sediments, as indicated by DDT/(DDD + DDE) ratios of less than one. The residual levels of DDXs were higher in the surface and core sediments in the western lake area than in other lake areas, which might be due to the combined inflow effects of municipal sewage, industrial wastewater and agricultural runoff. The DDX residues in the sediment cores reached peak values in the late 1970s or early 1980s. There were significant positive relationships between DDX residues in sediment cores with annual DDT production and with fine particulate sizes (<4.5 μm). The relationship between the DDXs and TOC in sediment was complex, as indicated by the significant differences among the surface and core sediments. The algae-derived organic matter significantly influenced the amount of residue, composition and distribution of DDXs in the sediments. The DDD/DDE ratios responded well to the anaerobic conditions in the sediments that were caused by algal blooms after the late 1970s in the western lake area. This suggests that the algae-derived organic matter was an important factor and served as a biomarker of eutrophication and also affected the DDX residues and lifecycle in the lake ecosystem.
Afficher plus [+] Moins [-]Influence of Southeast Asian Haze episodes on high PM10 concentrations across Brunei Darussalam Texte intégral
2016
Dotse, Sam-Quarcoo | Dagar, Lalit | Petra, Mohammad Iskandar | De Silva, Liyanage C.
Particulate matter (PM10) is the key indicator of air quality index in Brunei Darussalam and the principal pollutant for haze related episodes in Southeast Asia. This study examined the temporal and spatial distribution of PM10 base on a long-term monitoring data (2009–2014) in order to identify the emission sources and favorable meteorological conditions for high PM10 concentrations across the country. PM10 concentrations measured at the various locations differ significantly but the general temporal characteristics show clear patterns of seasonal variations across the country with the highest concentrations recorded during the southwest monsoon. The high PM10 values defined in the study were not evenly distributed over the years but occurred mostly within the southwest monsoon months of June to September. Further investigations with bivariate polar concentrations plots and k-means clustering demonstrated the significant influence of Southeast Asian regional biomass fires on the high PM10 concentrations recorded across the country. The results of the polar plots and cluster analyses were further confirmed by the evaluations with Hybrid Single-Particle Lagrangian Integrated Trajectory (HYSPLIT) backward air masses trajectories analysis and the Moderate Resolution Imaging Spectroradiometer (MODIS) fire records. Among the meteorological variables considered, temperature, rainfall and relative humidity were the most important meteorological variables that influence the concentration throughout the year. High PM10 values are associated with high temperatures and low amounts of rainfall and relative humidity. In addition, wind speed and direction also play significant role in the recorded high PM10 concentrations and were mainly responsible for its seasonality during the study period.
Afficher plus [+] Moins [-]An investigation into the effects of silver nanoparticles on natural microbial communities in two freshwater sediments Texte intégral
2016
Bao, Shaopan | Wang, Han | Zhang, Weicheng | Xie, Zhicai | Fang, Tao
The expanding production and usage of commercial silver nanoparticles (AgNPs) will inevitably increase their environmental release, with sediments as a substantial sink. However, little knowledge is available about the potential impacts of AgNPs on freshwater sediment microbial communities, as well as the interactions between microbial communities and biogeochemical factors in AgNPs polluted sediment. To address these issues, two different sediments: a eutrophic freshwater sediment and an oligotrophic freshwater sediment, were exposed to 1 mg/g of either AgNO3, uncoated AgNPs (35-nm and 75-nm), or polyvinylpyrrolidone coated AgNPs (PVP-AgNPs) (30–50 nm) for 45 days. High-throughput sequencing of 16S ribosomal ribonucleic acid (16S rRNA) genes using the Illumina MiSeq platform was conducted to evaluate the effects of Ag addition on bacterial community composition. Moreover, sediment microbial biomass and activity were assessed by counting cultivable bacterial number and determining enzyme activities. During the 45-day exposure, compared with no amendment control, some treatments had resulted in significant changes and alterations of sediment biomass or bacterial enzyme activities shortly. While the microbial components at phylum level were rarely affected by AgNPs addition, and as confirmed by the statistical analysis with two-factor analysis of similarities (ANOSIM), there were no significant differences on bacterial community structure across the amended treatments. Redundancy analysis further demonstrated that chemical parameters acid-volatile sulfide (AVS) and simultaneously extracted silver (SE-Ag) in sediment significantly structured the overall bacterial community in sediments spiked with various silver species. In summary, these findings suggested that the ecotoxicity of AgNPs may be attenuated by the transformation under complex environmental conditions and the self-adaption of sediment microbial communities.
Afficher plus [+] Moins [-]Australian atmospheric lead deposition reconstructed using lead concentrations and isotopic compositions of archival lichen and fungi Texte intégral
2016
Wu, Liqin | Taylor, Mark Patrick | Handley, Heather K. | Wu, Michael
Lead concentrations and their isotopic compositions were measured in lichen genera Cladonia and Usnea and fungi genus Trametes from the Greater Sydney region (New South Wales, Australia) that had been collected and archived over the past 120 years. The median lead concentrations were elevated in lichens and fungi prior to the introduction of leaded petrol (Cladonia 12.5 mg/kg; Usnea 15.6 mg/kg; Trametes 1.85 mg/kg) corresponding to early industrial development. During the period of leaded petrol use in Australian automobiles from 1932 to 2002, total median lead concentrations rose: Cladonia 18.8 mg/kg; Usnea 21.5 mg/kg; Trametes 4.3 mg/kg. Following the cessation of leaded petrol use, median total lead concentrations decreased sharply in the 2000s: Cladonia 4.8 mg/kg; Usnea 1.7 mg/kg. The lichen and fungi isotopic compositions reveal a significant decrease in ²⁰⁶Pb/²⁰⁷Pb ratios from the end of 19th century to the 1970s. The following decades were characterised by lower allowable levels of lead additive in fuel and the introduction of unleaded petrol in 1985. The environmental response to these regulatory changes was that lichen and fungi ²⁰⁶Pb/²⁰⁷Pb ratios increased, particularly from 1995 onwards. Although the lead isotope ratios of lichens continued to increase in the 2000s they do not return to pre-leaded petrol values. This demonstrates that historic leaded petrol emissions, inter alia other sources, remain a persistent source of anthropogenic contamination in the Greater Sydney region.
Afficher plus [+] Moins [-]