Affiner votre recherche
Résultats 571-580 de 6,546
Determinants of personal exposure to fine particulate matter in the retired adults – Results of a panel study in two megacities, China Texte intégral
2020
Li, Na | Xu, Chunyu | Liu, Zhe | Li, Ning | Chartier, Ryan | Chang, Junrui | Wang, Qin | Wu, Yaxi | Li, Yunpu | Xu, Dongqun
This study aimed to investigate the relationship between outdoor, indoor, and personal PM₂.₅ exposure in the retired adults and explore the effects of potential determinants in two Chinese megacities. A longitudinal panel study was conducted in Nanjing (NJ) and Beijing (BJ), China, and thirty-three retired non-smoking adults aged 43–86 years were recruited in each city. Repeated measurements of outdoor-indoor-personal PM₂.₅ concentrations were measured for five consecutive 24-h periods during both heating and non-heating seasons using real-time and gravimetric methods. Time-activity and household characteristics were recorded. Mixed-effects models were applied to analyze the determinants of personal PM₂.₅ exposure. In total, 558 complete sets of collocated 24-h outdoor-indoor-personal PM₂.₅ concentrations were collected. The median 24-h personal PM₂.₅ exposure concentrations ranged from 43 to 79 μg/m³ across cities and seasons, which were significantly greater than their corresponding indoor levels (ranging from 36 to 68 μg/m³, p < 0.001), but significantly lower than outdoor levels (ranging from 43 to 95 μg/m³, p < 0.001). Indoor and outdoor PM₂.₅ concentrations were the strongest determinants of personal exposures in both cities and seasons, with RM² ranging from 0.814 to 0.915 for indoor and from 0.698 to 0.844 for outdoor PM₂.₅ concentrations, respectively. The personal-outdoor regression slopes varied widely among seasons, with a pronounced effect in BJ (NHS: 0.618 ± 0.042; HS: 0.834 ± 0.023). Ventilation status, indoor PM₂.₅ sources, personal characteristics, and meteorological factors, were also found to influence personal exposure levels. The city and season-specific models developed here are able to account for 89%–93% of the variance in personal PM₂.₅ exposure. A LOOCV analysis showed an R² (RMSE) of 0.80–0.90 (0.21–0.36), while a 10-fold CV analysis demonstrated a R² (RMSE) of 0.83–0.90 (0.20–0.35). By incorporating potentially significant determinants of personal exposure, this modeling approach can improve the accuracy of personal PM₂.₅ exposure assessment in epidemiologic studies.
Afficher plus [+] Moins [-]Benzo[a]pyrene sourcing and abundance in a coal region in transition reveals historical pollution, rendering soil screening levels impractical Texte intégral
2020
Boente, C. | Baragaño, D. | Gallego, J.R.
Benzo[a]pyrene (BaP) is a hazardous compound for human health and for environmental compartments. Its transfer and deposition through the atmosphere affects soil quality. In this context, we quantified the content of BaP and other Polycyclic Aromatic Hydrocarbons (PAHs) in the soils of a prominent Coal Region in Transition to test whether the soil screening levels in force are realistic and whether they reflect the complexity of regions closely linked to heavy industries and mining. In this regard, soil screening levels are thresholds often established without considering historical anthropogenic activities that affect soil (diffuse pollution). The 150 soil samples studied showed a notable content of high molecular weight PAHs, and BaP surpassed the threshold levels in practically the entire area. PAH-parent diagrams revealed a relatively homogenous fingerprint of four clusters obtained in a multivariate statistical study. In addition, molecular diagnostic ratios pointed to coal combustion as the main pollution source, whereas only some outliers appeared to be related to specific spills. A BaP threshold was calculated to be 0.24 mg kg⁻¹, over 10 times the limit established in Spain. Finally, a factor analysis revealed a positive correlation of BaP with elements usually emitted in coal combustion processes, such as Tl and V. This observation fosters the hypothesis of a historical and indelible pollution fingerprint in soils whose sources, characteristics and potential environmental and health concerns deserve further attention. All things considered, caution should be taken when using soil screening levels in regions associated with coal exploitation and heavy industry.
Afficher plus [+] Moins [-]Formation of non-extractable residues as a potentially dominant process in the fate of PAHs in soil: Insights from a combined field and modeling study on the eastern Tibetan Plateau Texte intégral
2020
Ding, Yang | Li, Li | Wania, Frank | Zhang, Yuan | Huang, Huanfang | Liao, Ting | Liu, Jinhong | Qi, Shihua
Whereas non-extractable residue (NER) formation is recognized as an important process affecting the ecological risk of organic contaminants in soils, it is commonly neglected in regional-scale multi-media models assessing chemical environmental fate and risk. We used a combined field and modeling study to elucidate the relative importance of NER formation to the reduction in available organic contaminants compared with fate processes commonly considered in risk assessment models (volatilization, leaching, and biodegradation). Specifically, four polycyclic aromatic hydrocarbons (PAHs), i.e., phenanthrene (Phe), pyrene (Pyr), benzo[a]pyrene (BaP), and benzo[ghi]perylene (BghiP), were spiked and measured in a one-year field pot experiment at four sites with diverse environmental conditions on the eastern Tibetan Plateau. The rate of NER formation was derived as the difference between the overall rate of decline in total-extractable PAH concentrations, obtained by fitting a biphasic first-order model to the measured concentrations, and the sum of the calculated rates of volatilization, leaching, and biodegradation. Our work shows that the total-extractable PAH concentration undergoes a rapid decline and a slow decline, with shorter overall half-lives (especially for BaP and BghiP) than those observed in earlier studies. Generally, NER formation was assessed to be the dominant contributor (64 ± 33%) to the overall decline of PAHs, followed by biodegradation (35 ± 32%); volatilization and leaching were the smallest contributors. In particular, heavier PAHs (i.e. BaP and BghiP) tend to have shorter half-lives in the rapid and the overall decline phase, indicating that the erroneous estimation of environmental fate and risks might be more pronounced for organic contaminants with a large molecular size. The trend of overall decline rates of PAHs displayed a combined effect of NER formation and biodegradation. This work indicates the need to consider NER formation as a process in multi-media models of chemical fate and risk.
Afficher plus [+] Moins [-]Desorption kinetics of tetracyclines in soils assessed by diffusive gradients in thin films Texte intégral
2020
Ren, Suyu | Wang, Yi | Cui, Ying | Wang, Yan | Wang, Xiaochun | Chen, Jingwen | Tan, Feng
Tetracyclines (TCs) are frequently detected in agricultural soils worldwide, causing a potential threat to crops and human health. In this study, diffusive gradients in thin films technique (DGT) was used to measure the distribution and exchange rates of three TCs (tetracycline (TC), oxytetracycline (OTC) and chlortetracycline (CTC)) between the solid phase and solution in five farmland soils. The relationship between the accumulated masses with time suggested that TCs consumption in soil solution by DGT would induce the supply from the soil solid phase. The distribution coefficient for the labile antibiotics (Kdl), response time (Tc) and desorption/adsorption rates (kb and kf) between dissolved and sorbed TCs were derived from the dynamic model of DIFS (DGT induced fluxes in soils). The Kdl showed similar sizes of labile solid phase pools for TC and OTC while larger pool sizes were observed for CTC in the soils. Although the concentrations of CTC were lowest in soil solution, the potential hazard caused by continuous release from soil particles could not be ignored. The long response time (>30 min in most cases) suggested that the resupply of TCs from soil solids was limited by their desorption rates (1.26-121 × 10−6 s−1). The soils in finer texture, with higher clay and silt contents (<50 μm) showed a greater potential for TCs release.
Afficher plus [+] Moins [-]Occurrence of antibiotics and antibiotic resistance genes and their correlations in lower Yangtze River, China Texte intégral
2020
Zhang, Guodong | Lu, Shaoyong | Wang, Yongqiang | Liu, Xiaohui | Liu, Ying | Xu, Jiamin | Zhang, Tingting | Wang, Zhi | Yang, Yong
The overuse and misuse of antibiotics could promote the emergence of antibiotic resistance genes (ARGs) and pose a potential risk to human health and the ecological environment. In this study, fifteen antibiotics and their corresponding ARGs in water, sediment and sewage treatment plant (STP) effluent were analysed to investigate their occurrence and correlation in the Yangtze River (Jiangsu section) for the first time. The concentrations of erythromycin-H₂O (EM-H₂O) (2.08–30 ng L⁻¹) and ofloxacin (OFL) (290–8400 ng kg⁻¹) were the highest in the water and sediment, respectively, and EM-H₂O and clarithromycin (CLA) posed the highest risks to aquatic organisms. The concentrations of antibiotics in STP effluent were significantly higher (p < 0.05) than those in the water. Norfloxacin (NOR) was the most predominant antibiotic, with low removal efficiency (−38%-51%), in STPs; the concentration of NOR in the STP effluent was 4–6 orders of magnitude higher than that in the water. Moreover, the concentrations of antibiotics and their corresponding ARG abundance in downstream were higher than those in upstream, suggesting that STPs with high concentration levels might be an important source of river contamination. Additionally, the concentrations of antibiotics and the abundance of ARGs might increase after the sewage treatment process. The results also showed the prevalence of sul1 and sul2 in all the sampling sites. Significant correlations (p < 0.0001) were detected between int1 and sul1 and sul2, which resulted from the contribution of int1 to the propagation of ARGs. Overall, this study demonstrated the prevalence of antibiotics and ARGs and their inconsistent correlations in the Yangtze River (Jiangsu section) and provides support for further investigation of the occurrence and spread of antibiotics and ARGs.
Afficher plus [+] Moins [-]Microbial community evolution during the aerobic biodegradation of petroleum hydrocarbons in marine sediment microcosms: Effect of biostimulation and seasonal variations Texte intégral
2020
Hamdan, Hamdan Z. | Salam, Darine A.
Evolution of the microbial community structure in crude oil contaminated marine sediments was assessed under aerobic biodegradation during wet (18 °C) and dry (28 °C) seasons experiments, to account for seasonal variations in nutrients and temperature, under biostimulation and natural attenuation conditions. NMDS showed significant variation in the microbial communities between the wet and the dry season experiments, and between the biostimulation and the natural attenuation treatments in the dry season microcosms. No significant variation in the microbial community and oil biodegradation was observed during the wet season experiments due to high background nitrogen levels eliminating the effect of biostimulation. Larger variations were observed in the dry season experiments and were correlated to enhanced alkanes removal in the biostimulated microcosms, where Alphaproteobacteria dominated the total microbial community by the end of biodegradation (54%). Many hydrocarbonoclastic bacterial genera showed successive dominance during the operation affecting the ultimate performance of the microcosms.
Afficher plus [+] Moins [-]Biological effects from environmental pollution by toxic metals in the “land of fires” (Italy) assessed using the biomonitor species Lunularia cruciata L. (Dum) Texte intégral
2020
Maresca, Viviana | Sorbo, Sergio | Loppi, Stefano | Funaro, Federica | Del Prete, Davide | Basile, Adriana
The liverwort Lunularia cruciata was collected from the town of Acerra, in the heart of the so-called ‘Land of Fires’ a large area in the eastern part of Campania region of Italy affected by burning of waste and fraudulent dumping and one of the vertices of the “Italian Triangle of Death” so said for the high incidence and mortality from tumors. The data obtained from these samples were compared with samples collected in two other sites representing two different environmental conditions. The soil below the samples, and gametophytes, were collected and analyzed for the concentration of Al, As, Ba, Cd, Cr, Cu, Fe, Hg, Mn, Ni, Pb, Se, V. DNA damage, Reactive Oxygen Species production and localization, activity of antioxidant enzymes and presence of chelating molecules were investigated. All biomarkers provided an answer closely related to the pollution conditions at the 3 sites. We discuss the data considering the possibility of using these biological changes as environmental pollution biomarkers. Finally, it is underlined the importance of phytochelatins due to of their specificity for metal pollution.
Afficher plus [+] Moins [-]Pilot-scale study on the effects of cyanobacterial blooms on Vallisneria natans and biofilms at different phosphorus concentrations Texte intégral
2020
Li, Qi | Gu, Peng | Luo, Xin | Zhang, Hao | Huang, Suzhen | Zhang, Jibiao | Zheng, Zheng
Cyanobacterial blooms cause potential risk to submerged macrophytes and biofilms in eutrophic environments. This pilot-scale study investigated the growth, oxidative responses, and detoxification activity of aquatic plants in response to cyanobacterial blooms under different phosphorus concentrations. Variations of extracellular polymeric substances (EPSs) and microbial community composition were also assessed. Results showed that the biomass of Vallisneria natans increased with exposure to cyanobacterial blooms at higher phosphorous concentrations (P > 0.2 mg L⁻¹). The amount of microcystin compounds (MC-LR) released into the water and the accumulation of MC-LR into both plant tissue and biofilms changed according to the phosphorus concentration. Furthermore, a certain degree of oxidative stress was induced in the plants, as evidenced by increased activity of superoxide dismutase, catalase, and peroxidase, as well as increased malondialdehyde concentrations; significant differences were also seen in acid phosphatase and glutathione S-transferase activities, as well as in glutathione concentrations. Together, these responses indicate potential mechanisms of MC-LR detoxification. Broader α-D-glucopyranose polysaccharides (PS) increased with increasing phosphorous and aggregated into clusters in biofilm EPS in response to the cyanobacterial blooms. In addition, alterations were seen in the abundance and structure of the microbial communities present in exposed biofilms. These results demonstrate that cyanobacterial blooms under different concentrations of phosphorus can induce differential responses, which can have a significant impact on aquatic ecosystems.
Afficher plus [+] Moins [-]Improvement in hourly PM2.5 estimations for the Beijing-Tianjin-Hebei region by introducing an aerosol modeling product from MASINGAR Texte intégral
2020
Zhang, Yixiao | Wang, Wei | Ma, Yingying | Wu, Lixin | Xu, Weiwei | Li, Jia
This study improves traditional PM₂.₅ estimation models by combining an hourly aerosol optical depth from the Advanced Himawari Imager onboard Himawari-8 with a newly introduced predictor to estimate hourly PM₂.₅ concentrations in the Beijing–Tianjin–Hebei (BTH) region from November 1, 2018 to October 31, 2019. The new predictor is an hourly PM₂.₅ forecasting product from the Model of Aerosol Species IN the Global AtmospheRe (MASINGAR). Comparative experiments were conducted by utilizing three extensively used regression models, namely, multiple linear regression (MLR), geographically weighted regression (GWR), and linear mixed effects (LME). A ten-fold cross validation (CV) demonstrated that the MASINGAR product significantly improved the performances of these models. The introduced product increased the model’s determination coefficients (from 0.316 to 0.379 for MLR, from 0.393 to 0.445 for GWR, and from 0.718 to 0.765 for LME), decreased their root mean square errors (from 38.2 μg/m³ to 36.4 μg/m³ for MLR, from 36.0 μg/m³ to 34.4 μg/m³ for GWR, and from 24.5 μg/m³ to 22.4 μg/m³ for LME) and mean absolute errors (from 25.2 μg/m³ to 23.3 μg/m³ for MLR, from 23.5 μg/m³ to 21.8 μg/m³ for GWR, and from 15.2 μg/m³ to 13.7 μg/m³ for LME). Then, a well-trained LME model was utilized to estimate the spatial distributions of hourly PM₂.₅ concentrations. Highly polluted localities were clustered in the central and southern areas of the BTH region, and the least polluted area was in northwestern Hebei. Seasonal PM₂.₅ levels averaged from the hourly estimations exhibited the highest concentrations (55.4 ± 56.8 μg/m³) in the winter and lowest concentrations (25.1 ± 18.2 μg/m³) in the summer.Introducing the PM₂.₅ products from MASINGAR can significantly improve the performance of traditional models for surface PM₂.₅ estimations by 7–20%.
Afficher plus [+] Moins [-]Sex-dependent locomotion and physiological responses shape the insecticidal susceptibility of parasitoid wasps Texte intégral
2020
Andreazza, Felipe | Haddi, Khalid | Nörnberg, Sandro D. | Guedes, Raul Narciso C. | Nava, Dori E. | Oliveira, Eugênio E.
The adaptive fitness of insect species can be shaped by how males and females respond, both physiologically and behaviorally, to environmental challenges, such as pesticide exposure. In parasitoid wasps, most toxicological investigations focus only on female responses (e.g., survival and especially parasitism abilities), leaving the male contributions to adaptive fitness (survival, locomotion, mate search) poorly investigated. Here, we evaluated the toxicity of the spinosyn insecticide spinosad against the South American fruit fly, Anastrepha fraterculus, and we used the parasitoid wasp Diachasmimorpha longicaudata (Ashmead) to evaluate whether sex-linked locomotory and physiological responses would influence the susceptibility of these organisms to spinosad. Our results revealed that D. longicaudata males were significantly more susceptible (median lethal time (LT₅₀) = 24 h) to spinosad than D. longicaudata females (LT₅₀ = 120 h), which may reflect the differences in their locomotory and physiological (e.g., respiratory) responses to mitigate insecticide exposure. Compared to D. longicaudata females, male wasps were lighter (P < 0.001), walked for longer distances (P < 0.001) and periods (P < 0.001), and exhibited higher sensilla densities in their tarsi (P = 0.008), which may facilitate their intoxication with the insecticide. These findings indicate that male parasitoids should not be exempt from insecticide selectivity tests, as these organisms can be significantly more affected by such environmental challenges than their female conspecifics.
Afficher plus [+] Moins [-]