Affiner votre recherche
Résultats 571-580 de 7,282
Synthesis and characterization of lanthanum-based metal organic framework decorated polyaniline for effective adsorption of lead ions from aqueous solutions Texte intégral
2022
Govarthanan, M. | Jeon, Chang-Hyun | Kim, Woong
The novel La-MOF@x%PANI composite was synthesized via a two-step procedure with ultra-sonication, and the adsorption mechanism of Pb²⁺ ions from synthetic aqueous solutions was systematically studied. The Pb²⁺ adsorption on the La-MOF@x%PANI was evaluated by the Fourier transform infrared spectroscopy, powder X-ray diffraction, field-emission scanning electron microscopy, energy-dispersive X-ray analysis, Brunauer–Emmett–Teller analysis, X-ray photoelectron spectroscopy, and elemental mapping analyses. The effects of the adsorption-influencing parameters, including contact time, solution pH, and co-existing cations on the maximum adsorption capacity of Pb²⁺ onto the prepared composite material were investigated. Moreover, the adsorption of Pb²⁺ ions could be eliminated with rapid adsorption kinetics using the water-stable La-MOF@x%PANI composite. The as-synthesized La-MOF@50%PANI exhibited excellent adsorption performance toward Pb²⁺ ions with an extraordinary adsorption capacity of 185.19 mg/g at pH 6. The Pb²⁺ adsorption onto the La-MOF@x%PANI composite follows the pseudo-second-order kinetics and fits well with the Langmuir isotherm model, indicating the Pb²⁺ adsorption depended on the solution pH as the adsorption mechanism was mainly governed by the electrostatic attraction. Notably, La-MOF@x%PANI composite possesses outstanding regeneration ability and stability after up to four successive cycles. The satisfactory findings reflect that the La-MOF@50%PANI hybrid composite holds a great promise for remediating Pb²⁺ ions from aqueous environments.
Afficher plus [+] Moins [-]Copper isotope ratios allowed for quantifying the contribution of coal mining and combustion to total soil copper concentrations in China Texte intégral
2022
Ren, Mengxi | Zheng, Liugen | Wang, Dandan | Chen, Xing | Dong, Xianglin | Wei, Xiangping | Cheng, Hua
The most prominent source of Cu contamination in soils is metal mining and processing, partly since the Middle Age. However, coal mining and combustion can also cause (some) Cu contamination. We studied the distribution of Cu concentrations and isotope ratios in soils of the Huaibei coal mining area. The contribution of the coal mining and combustion to total Cu concentrations in soil was determined with a two-end-member mixing model based on the distinct δ⁶⁵Cu values of the Cu emitted from coal mining and combustion and in native soil. The mean Cu concentration of 75 mg kg⁻¹ exceeded the local soil background value (round to 22.13 mg kg⁻¹). The similar δ⁶⁵Cu value of grass near the coal mining and combustion operation as in gangue and flying ash indicated a superficial Cu contamination. Mining input was the dominant source of Cu in the contaminated soils, contributing up to 95% and on average 72% of the total Cu in the topsoils. The mining-derived Cu was leached to a depth of 65 cm, where still 29% of the Cu could be attributed to the mining emissions. Grasses showed lower δ⁶⁵Cu values than the topsoils, because of the preferential uptake of light Cu isotopes. However, the Δ⁶⁵Cugᵣₐₛₛ₋ₛₒᵢₗ was lower in the contaminated than the uncontaminated area because of superficial adsorption of isotopically heavy Cu from the mining emissions. Overall, in this study the distinct δ⁶⁵Cu values of the mining-derived Cu emissions and the native soil allowed for the quantification of the mining-derived Cu and had already reached the subsoil and contaminated the grass by superficial adsorption in only 60 years of mining operation.
Afficher plus [+] Moins [-]Effect of freeze-thaw cycle aging and high-temperature oxidation aging on the sorption of atrazine by microplastics Texte intégral
2022
Sun, Shu | Sui, He | Xu, Liang | Zhang, Jiao | Wang, Dongying | Zhou, Zhenfeng
This study aims to better understand the aging characteristics of microplastics in the environment and the influence of aging microplastics on the migration and transformation of organic pollutants. In this study, polyvinyl chloride (PVC) and polyethylene (PE) were chosen as research objects, and the effects of two aging methods (freeze-thaw cycle aging and high-temperature oxidation aging) on their surface properties and atrazine (ATZ) sorption were investigated. The crystallinity of PE increased after freeze-thaw cycling and decreased after high-temperature oxidation. The freeze-thaw cycle destroys the amorphous region of PE, reducing the micropores on the PE surface and decreasing the ATZ adsorbed by PE. Although aging had no significant effect on the surface structure of PVC, it caused new oxygen-containing functional groups to be produced on the PVC surface, which reduced the ATZ adsorption capacity. These results show that the two aging modes change the surface properties of PVC and PE, thus affecting the sorption mechanism of ATZ, and provide a theoretical premise for the natural behavior and ecological chance assessment of ATZ in the presence of microplastics.
Afficher plus [+] Moins [-]Effects of Covid-19 pandemic lockdown and environmental pollution assessment in Campania region (Italy) through the analysis of heavy metals in honeybees Texte intégral
2022
Scivicco, Marcello | Nolasco, Agata | Esposito, Luigi | Ariano, Andrea | Squillante, Jonathan | Esposito, Francesco | Cirillo Sirri, Teresa | Severino, Lorella
The Covid-19 outbreak had a critical impact on a massive amount of human activities as well as the global health system. On the other hand, the lockdown and related suspension of working activities reduced pollution emissions. The use of biomonitoring is an efficient and quite recent tool to assess environmental pollution through the analysis of a proper bioindicator, such as bees. This study set out to ascertain the impact of the Covid-19 pandemic lockdown on the environmental occurrence of eleven heavy metals in the Campania region (Italy) by analyzing bees and bee products. A further aim of this study was the assessment of the Honeybee Contamination Index (HCI) in three different areas of the Campania region and its comparison with other Italian areas to depict the current environmental pollutants levels of heavy metals. The results showed that the levels of heavy metals bioaccumulated by bees during the pandemic lockdown (T1) were statistically lower than the sampling times after Covid-19 restrictions and the resumption of some or all activities (T2 and T3). A comparable trend was observed in wax and pollen. However, bee, pollen, and wax showed higher levels of Cd and Hg in T1 than T2 and T3. The analysis of the HCI showed a low contamination level of the sampling sites for Cd and Pb, and an intermediate-high level as regards Ni and Cr. The biomonitoring study highlighted a decrease of heavy metals in the environmental compartments due to the intense pandemic restrictions. Therefore, Apis mellifera and other bee products remain a reliable and alternative tool for environmental pollution assessment.
Afficher plus [+] Moins [-]Biochemical toxicity and transcriptome aberration induced by dinotefuran in Bombyx mori Texte intégral
2022
Xu, Shiliang | Hao, Zhihua | Li, Yinghui | Zhou, Yanyan | Shao, Ruixi | Chen, Rui | Zheng, Meidan | Xu, Yusong | Wang, Huabing
Dinotefuran is a third-generation neonicotinoid pesticide and is increasingly used in agricultural production, which has adverse effects on nontarget organisms. However, the research on the impact of dinotefuran on nontarget organisms is still limited. Here the toxic effects of dinotefuran on an important economic species and a model lepidopteran insect, Bombyx mori, were investigated. Exposure to different doses of dinotefuran caused physiological disorders or death. Cytochrome P450, glutathione S-transferase, carboxylesterase, and UDP glycosyl-transferase activities were induced in the fat body at early stages after dinotefuran exposure. By contrast, only glutathione S-transferase activity was increased in the midgut. To overcome the lack of sensitivity of the biological assays at the individual organism level, RNA sequencing was performed to measure differential expressions of mRNA from silkworm larvae after dinotefuran exposure. Differential gene expression profiling revealed that various detoxification enzyme genes were significantly increased after dinotefuran exposure, which was consistent with the upregulation of the detoxifying enzyme. The global transcriptional pattern showed that the physiological responses induced by dinotefuran toxicity involved multiple cellular processes, including energy metabolism, oxidative stress, detoxification, and other fundamental physiological processes. Many metabolism processes, such as carbon metabolism, fatty acid biosynthesis, pyruvate metabolism, and the citrate cycle, were partially repressed in the midgut or fat body. Furthermore, dinotefuran significantly activated the MAPK/CREB, CncC/Keap1, PI3K/Akt, and Toll/IMD pathways. The links between physiological, biochemical toxicity and comparative transcriptomic analysis facilitated the systematic understanding of the integrated biological toxicity of dinotefuran. This study provides a holistic view of the toxicity and detoxification metabolism of dinotefuran in silkworm and other organisms.
Afficher plus [+] Moins [-]Polystyrene microplastic particles in combination with pesticides and antiviral drugs: Toxicity and genotoxicity in Ceriodaphnia dubia Texte intégral
2022
Nugnes, Roberta | Russo, Chiara | Lavorgna, Margherita | Orlo, Elena | Kundi, M. (Michael) | Isidori, Marina
Freshwater ecosystems are recognized as non-negligible sources of plastic contamination for the marine environment that is the final acceptor of 53 thousand tons of plastic per year. In this context, microplastic particles are well known to directly pose a great threat to freshwater organisms, they also indirectly affect the aquatic ecosystem by adsorbing and acting as a vector for the transport of other pollutants (“Trojan horse effect”). Polystyrene is one of the most widely produced plastics on a global scale, and it is among the most abundant microplastic particles found in freshwaters. Nevertheless, to date few studies have focused on the eco-genotoxic effects on freshwater organisms caused by polystyrene microplastic particles (PS-MPs) in combination with other pollutants such as pharmaceuticals and pesticides. The aim of this study is to investigate chronic and sub-chronic effects of the microplastic polystyrene beads (PS-MP, 1.0 μm) both as individual xenobiotic and in combination (binary/ternary mixtures) with the acicloguanosine antiviral drug acyclovir (AC), and the neonicotinoid broad-spectrum insecticide imidacloprid (IMD) in one of the most sensitive non-target organisms of the freshwater food chain: the cladoceran crustacean Ceriodaphnia dubia. Considering that the individually selected xenobiotics have different modes of action and/or different biological sites, the Bliss independence was used as reference model for this research. Basically, when C. dubia neonates were exposed for 24 h to the mixtures during Comet assay, mostly an antagonistic genotoxic effect was observed. When neonates were exposed to the mixtures for 7 days, mostly an additive chronic toxic effect occurred at concentrations very close or even overlapping to the environmental ones ranging from units to tens of ng/L for PS-MPs, from tenths/hundredths to units of μg/L for AC and from units to hundreds of μg/L for IMD, revealing great environmental concern.
Afficher plus [+] Moins [-]Association between bedroom light exposure at night and allostatic load among Chinese young adults Texte intégral
2022
Xu, Yu-xiang | Huang, Yan | Zhou, Yi | Yu, Yang | Wan, Yu-hui | Tao, Fang-biao | Sun, Ying
Light at night (LAN) has received increasing attention for its potential health hazards to human and animals. However, to our knowledge, no study has explored the specific effects of bedroom nighttime light exposure on allostatic load (AL). To investigate the association between bedroom individual-level LAN exposure and AL among young adults, an integrative index manifests multiple system dysregulation. Using data from a cohort of 484 Chinese young adults aged 16–22 years. Bedroom light was objectively recorded at 1-min intervals for two nights using a portable illuminance meter. Fasting blood samples were collected at one-year follow-up for the detection of AL parameters. AL score was derived as sum of the top quartile of twelve physiological biomarkers in four systems: metabolic system (BMI, WC, TC, HDL, LDL, TG, HbA1c, INS, GLU); cardiovascular system (SBP, DBP); immune and inflammatory systems (hs-CRP), with HDL was lowest quartile. Univariate and multivariate linear regression models were used to evaluate the association between LAN intensity with AL score and separate AL parameters. The average age of subjects was 18.7 years, 64.3% were female. The mean AL score of LAN group (average LAN intensity ≥ 3lx) was significantly higher than Dim group (3.6 ± 2.6 vs. 2.7 ± 2.1; P = 0.007). For each 1 lx increase of LAN intensity was associated with 0.15-unit increase in AL score (95% CI: 0.06, 0.24; P = 0.001). Moreover, LAN group was associated with increased 1.01-unit in AL score (95% CI: 0.36–1.66; P = 0.003) compared to Dim group. Significant associations between bedroom LAN exposure with allostatic load and separate AL biomarkers were observed in our study. Keeping bedroom darkness at night may be a practicable option to reduce the wear of multiple body systems and improve human cardiometabolic health from early in life.
Afficher plus [+] Moins [-]Insights into the effects of Fenton oxidation on PAH removal and indigenous bacteria in aged subsurface soil Texte intégral
2022
Gou, Yaling | Ma, Junsheng | Yang, Sucai | Song, Yun
Combined chemical oxidation and bioremediation is a promising method of treating polycyclic aromatic hydrocarbon (PAH) contaminated soil, wherein indigenous soil bacteria play a critical role in the subsequent biodegradation of PAHs after the depletion of the oxidant. In this study, different Fenton conditions were applied by varying either the oxidation mode (conventional Fenton (CF), Fenton-like (LF), modified Fenton (MF), and graded modified Fenton (GMF)) or the H₂O₂ dosage (0%, 3%, 6%, and 10% (v/v)) to treat PAH contaminated soil. The results revealed that when equal dosages of H₂O₂ are applied, PAHs are significantly removed following oxidation treatment, and the removal percentages obeyed the following sequence: CF > GMF > MF > LF. In addition, higher dosages of H₂O₂ improved the PAH removal from soil treated with the same oxidation mode. The ranges of total PAHs removal efficiencies in the soil added 3%, 6%, and 10% of H₂O₂ (v/v) were 18.04%∼59.48%, 31.88%∼71.83%, and 47.56%∼78.16%, respectively. The PAH removal efficiency decreased with increasing ring numbers for the same oxidation treatment. However, the negative influences on soil bacterial abundance, community composition, and function were observed after Fenton treatment. After Fenton oxidation, the bacterial abundance in the soil received 3%, 6%, and 10% of H₂O₂ (v/v) decreased 1.96–2.69, 2.44–3.22, and 3.09–3.42 orders of magnitude compared to the untreated soil. The soil bacterial abundance tended to be impacted by the oxidation mode and H₂O₂ dosage simultaneously. While the main factor influencing the soil bacterial community composition was the H₂O₂ dosages. The results of this study showed that different oxidation mode and H₂O₂ dosage exhibited different effects on PAHs removal and soil bacteria (including abundance, community composition, and function), and there was a trade-off between the removal of PAHs and the adverse impact on soil bacteria.
Afficher plus [+] Moins [-]A critical review on biochar-assisted free radicals mediated redox reactions on the transformation and reduction of potentially toxic metals: Occurrence, formation, and environmental applications Texte intégral
2022
Rashid, Muhammad Saqib | Liu, Guijian | Yousaf, Balal | Hamid, Yasir | Rehman, Abdul | Arif, Muhammad | Ahmed, Rafay | Ashraf, Aniqa | Song, Yu
Potentially toxic metals have become a viable threat to the ecosystem due to their carcinogenic nature. Biochar has gained substantial interest due to its redox-mediated processes and redox-active metals. Biochar has the capacity to directly adsorb the pollutants from contaminated environments through several mechanisms such as coprecipitation, complexation, ion exchange, and electrostatic interaction. Biochar's electron-mediating potential may be influenced by the cyclic transition of surface moieties and conjugated carbon structures. Thus, pyrolysis configuration, biomass material, retention time, oxygen flow, and heating time also affect biochar's redox properties. Generally, reactive oxygen species (ROS) exist as free radicals (FRs) in radical and non-radical forms, i.e., hydroxyl radical, superoxide, nitric oxide, hydrogen peroxide, and singlet oxygen. Heavy metals are involved in the production of FRs during redox-mediated reactions, which may contribute to ROS formation. This review aims to critically evaluate the redox-mediated characteristics of biochar produced from various biomass feedstocks under different pyrolysis conditions. In addition, we assessed the impact of biochar-assisted FRs redox-mediated processes on heavy metal immobilization and mobility. We also revealed new insights into the function of FRs in biochar and its potential uses for environment-friendly remediation and reducing the dependency on fossil-based materials, utilizing local residual biomass as a raw material in terms of sustainability.
Afficher plus [+] Moins [-]Chronic exposure to environmentally relevant levels of di(2-ethylhexyl) phthalate (DEHP) disrupts lipid metabolism associated with SBP-1/SREBP and ER stress in C. elegans Texte intégral
2022
How, Chun Ming | Hsiu-Chuan Liao, Vivian
DEHP is commonly found in the environment, biota, food, and humans, raising significant health concerns. Whether developmental stage and exposure duration modify the obesogenic effects of DEHP is unclear, especially the underlying mechanisms by which chronic exposure to DEHP as well as its metabolites remain largely unknown. This study investigated the obesogenic effects of chronic DEHP exposure, with levels below environmentally-relevant amounts and provide the mechanism in Caenorhabditis elegans. We show that early-life DEHP exposure resulted in an increased lipid and triglyceride (TG) accumulation mainly attributed to DEHP itself, not its metabolite mono-2-ethylhexyl phthalate (MEHP). In addition, developmental stage and exposure timing influence DEHP-induced TG accumulation and chronic DEHP exposure resulted in the most significant effect. Analysis of fatty acid composition shows that chronic DEHP exposure altered fatty acid composition and TG, resulting in an increased ω-6/ω-3 ratio. The increased TG content by chronic DEHP exposure required lipogenic genes fat-6, fat-7, pod-2, fasn-1, and sbp-1. Moreover, chronic DEHP exposure induced XBP-1-mediated endoplasmic reticulum (ER) stress which might lead to up-regulation of sbp-1. This study suggests the possible involvement of ER stress and SBP-1/SREBP-mediated lipogenesis in chronic DEHP-induced obesogenic effects. Results from this study implies that chronic exposure to DEHP disrupts lipid metabolism, which is likely conserved across species due to evolutionary conservation of molecular mechanisms, raising concerns in ecological and human health.
Afficher plus [+] Moins [-]