Affiner votre recherche
Résultats 581-590 de 4,307
Diet and metabolic state are the main factors determining concentrations of perfluoroalkyl substances in female polar bears from Svalbard Texte intégral
2017
Tartu, Sabrina | Bourgeon, Sophie | Aars, Jon | Andersen, Magnus | Lone, Karen | Jenssen, Bjørn Munro | Polder, Anuschka | Thiemann, Gregory W. | Torget, Vidar | Welker, Jeffrey M. | Routti, Heli
Diet and metabolic state are the main factors determining concentrations of perfluoroalkyl substances in female polar bears from Svalbard Texte intégral
2017
Tartu, Sabrina | Bourgeon, Sophie | Aars, Jon | Andersen, Magnus | Lone, Karen | Jenssen, Bjørn Munro | Polder, Anuschka | Thiemann, Gregory W. | Torget, Vidar | Welker, Jeffrey M. | Routti, Heli
Perfluoroalkyl substances (PFASs) have been detected in organisms worldwide, including Polar Regions. The polar bear (Ursus maritimus), the top predator of Arctic marine ecosystems, accumulates high concentrations of PFASs, which may be harmful to their health. The aim of this study was to investigate which factors (habitat quality, season, year, diet, metabolic state [i.e. feeding/fasting], breeding status and age) predict PFAS concentrations in female polar bears captured on Svalbard (Norway). We analysed two perfluoroalkyl sulfonates (PFSAs: PFHxS and PFOS) and C8-C13 perfluoroalkyl carboxylates (PFCAs) in 112 plasma samples obtained in April and September 2012–2013. Nitrogen and carbon stable isotope ratios (δ15N, δ13C) in red blood cells and plasma, and fatty acid profiles in adipose tissue were used as proxies for diet. We determined habitat quality based on movement patterns, capture position and resource selection functions, which are models that predict the probability of use of a resource unit. Plasma urea to creatinine ratios were used as proxies for metabolic state (i.e. feeding or fasting state). Results were obtained from a conditional model averaging of 42 general linear mixed models. Diet was the most important predictor of PFAS concentrations. PFAS concentrations were positively related to trophic level and marine diet input. High PFAS concentrations in females feeding on the eastern part of Svalbard, where the habitat quality was higher than on the western coast, were likely related to diet and possibly to abiotic factors. Concentrations of PFSAs and C8-C10 PFCAs were higher in fasting than in feeding polar bears and PFOS was higher in females with cubs of the year than in solitary females. Our findings suggest that female polar bears that are exposed to the highest levels of PFAS are those 1) feeding on high trophic level sea ice-associated prey, 2) fasting and 3) with small cubs.
Afficher plus [+] Moins [-]Diet and metabolic state are the main factors determining concentrations of perfluoroalkyl substances in female polar bears from Svalbard Texte intégral
2017
Diet and metabolic state are the main factors determining concentrations of perfluoroalkyl substances in female polar bears from Svalbard Texte intégral
2017
Tartu, Sabrina | Bourgeon, Sophie | Aars, Jon | Andersen, Magnus | Lone, Karen | Jenssen, Bjørn Munro | Polder, Anuschka | Thiemann, Gregory W. | Torget, Vidar | Welker, Jeffrey Martin | Routti, Heli Anna Irmeli
Accepted manuscript version. Published version available in <a href=https://doi.org/10.1016/j.envpol.2017.04.100> Environmental Pollution 2017, 229 :146-158. </a> | Perfluoroalkyl substances (PFASs) have been detected in organisms worldwide, including Polar Regions. The polar bear (Ursus maritimus), the top predator of Arctic marine ecosystems, accumulates high concentrations of PFASs, which may be harmful to their health. The aim of this study was to investigate which factors (habitat quality, season, year, diet, metabolic state [i.e. feeding/fasting], breeding status and age) predict PFAS concentrations in female polar bears captured on Svalbard (Norway). We analysed two perfluoroalkyl sulfonates (PFSAs: PFHxS and PFOS) and C<sub>8</sub>-C<sub>13</sub> perfluoroalkyl carboxylates (PFCAs) in 112 plasma samples obtained in April and September 2012–2013. Nitrogen and carbon stable isotope ratios (δ<sup>15</sup>N, δ<sup>13</sup>C) in red blood cells and plasma, and fatty acid profiles in adipose tissue were used as proxies for diet. We determined habitat quality based on movement patterns, capture position and resource selection functions, which are models that predict the probability of use of a resource unit. Plasma urea to creatinine ratios were used as proxies for metabolic state (i.e. feeding or fasting state). Results were obtained from a conditional model averaging of 42 general linear mixed models. Diet was the most important predictor of PFAS concentrations. PFAS concentrations were positively related to trophic level and marine diet input. High PFAS concentrations in females feeding on the eastern part of Svalbard, where the habitat quality was higher than on the western coast, were likely related to diet and possibly to abiotic factors. Concentrations of PFSAs and C<sub>8</sub>-C<sub>10</sub> PFCAs were higher in fasting than in feeding polar bears and PFOS was higher in females with cubs of the year than in solitary females. Our findings suggest that female polar bears that are exposed to the highest levels of PFAS are those 1) feeding on high trophic level sea ice-associated prey, 2) fasting and 3) with small cubs.
Afficher plus [+] Moins [-]Urban emissions hotspots: Quantifying vehicle congestion and air pollution using mobile phone GPS data Texte intégral
2017
Gately, Conor K. | Hutyra, Lucy R. | Peterson, Scott | Sue Wing, Ian
On-road emissions vary widely on time scales as short as minutes and length scales as short as tens of meters. Detailed data on emissions at these scales are a prerequisite to accurately quantifying ambient pollution concentrations and identifying hotspots of human exposure within urban areas. We construct a highly resolved inventory of hourly fluxes of CO, NO2, NOx, PM2.5 and CO2 from road vehicles on 280,000 road segments in eastern Massachusetts for the year 2012. Our inventory integrates a large database of hourly vehicle speeds derived from mobile phone and vehicle GPS data with multiple regional datasets of vehicle flows, fleet characteristics, and local meteorology. We quantify the ‘excess’ emissions from traffic congestion, finding modest congestion enhancement (3–6%) at regional scales, but hundreds of local hotspots with highly elevated annual emissions (up to 75% for individual roadways in key corridors). Congestion-driven reductions in vehicle fuel economy necessitated ‘excess’ consumption of 113 million gallons of motor fuel, worth ∼ $415M, but this accounted for only 3.5% of the total fuel consumed in Massachusetts, as over 80% of vehicle travel occurs in uncongested conditions. Across our study domain, emissions are highly spatially concentrated, with 70% of pollution originating from only 10% of the roads. The 2011 EPA National Emissions Inventory (NEI) understates our aggregate emissions of NOx, PM2.5, and CO2 by 46%, 38%, and 18%, respectively. However, CO emissions agree within 5% for the two inventories, suggesting that the large biases in NOx and PM2.5 emissions arise from differences in estimates of diesel vehicle activity. By providing fine-scale information on local emission hotspots and regional emissions patterns, our inventory framework supports targeted traffic interventions, transparent benchmarking, and improvements in overall urban air quality.
Afficher plus [+] Moins [-]Personal exposure to fine particulate matter, lung function and serum club cell secretory protein (Clara) Texte intégral
2017
Wang, Cuicui | Cai, Jing | Chen, Renjie | Shi, Jingjin | Yang, Changyuan | Li, Huichu | Lin, Zhijing | Meng, Xia | Liu, Cong | Niu, Yue | Xia, Yongjie | Zhao, Zhuohui | Li, Weihua | Kan, Haidong
The underlying mechanisms about the association between ambient fine particulate matter (PM2.5) and lung function were unclear. Few epidemiological studies have evaluated the potential mediating effects of serum club cell secretory protein (Clara) (CC16), a biomarker of pulmonary epithelium integrity.To evaluate the short-term effect of personal PM2.5 exposure on lung function and to explore the potential mediating role of CC16 in this effect.We enrolled 36 healthy, nonsmoking college students for a panel study in Shanghai, China from December 17, 2014 to July 11, 2015. We measured personal and real-time exposure to PM2.5 for 72 h preceding each of four rounds of health examinations, including lung function test and serum CC16 measurement. We used linear mixed-effect models to examine the effects of PM2.5 on lung function and CC16 over various lag times. Furthermore, we analyzed the mediating effect of CC16 in the association between PM2.5 and lung function.Average PM2.5 exposure ranged from 36 to 52 μg/m3 across different lag periods. PM2.5 exposure was negatively associated with lung function and positively associated with serum CC16 concentration. The effect of PM2.5 on CC16 occurred earlier than that on lung function. For instance, an interquartile range (IQR) increase in 0–2 h average exposure to PM2.5 was significantly associated with a 4.84% increase in serum CC16; and an IQR increase in 3–6 h average exposure to PM2.5 was significantly associated with a 1.08% decrease in 1-sec forced expiratory volume. These effects lasted up to 24 h after exposure. Increased serum CC16 contributed 3.9%–36.3% of the association between PM2.5 and impaired lung function.Acute exposure to PM2.5 might induce an immediate decrease in lung function by virtue of the loss of pulmonary epithelium integrity.
Afficher plus [+] Moins [-]Effects of wastewater irrigation and sewage sludge application on soil residues of chiral fungicide benalaxyl Texte intégral
2017
Jing, Xu | Yao, Guojun | Liu, Donghui | Liang, Yiran | Luo, Mai | Zhou, Zhiqiang | Wang, Peng
The effects of wastewater irrigation and sewage sludge on the dissipation behavior of the fungicide benalaxyl and its primary metabolite benalaxyl acid in soil were studied on an enantiomeric level during a 148-day exposure experiment. Chiral separation and analysis of the two pairs of enantiomers were achieved using HPLC-MS/MS with a chiralpak IC chiral column. Benalaxyl decreased with half-life of 16.1 days in soil under tap water irrigation with preferential residue of S-benalaxyl. Benalaxyl acid was formed with great preference of R-enantiomer before 21 days while enriched in S-enantiomer afterwards. The degradation of benalaxyl was restrained by both wastewater and treated wastewater irrigation, but the enantioselectivity in S-benalaxyl residue was enhanced. Benalaxyl acid was also formed with similar enantioselectivity as in tap water irrigation. Sewage sludge could accelerate benalaxyl degradation with shorter half-life. Surprisingly, the enantioselectivity with preference degradation of S-enantiomer in sewage sludge was opposite to that in soil. More benalaxyl acid was generated with EF values always lower than 0.5 and remained longer in sewage sludge than in soil. A sterilization experiment indicated that the conversion of benalaxyl to benalaxyl acid and the enantioselectivity were determined by the microorganisms in soil or sewage sludge. Farming practices like wastewater irrigation and sewage sludge application might not only influence the fate of pesticide, but also the enantioselectivity of chiral pesticide enantiomers and thus the risks of pesticide residues posed to the environment.
Afficher plus [+] Moins [-]Selenium speciation in seleniferous agricultural soils under different cropping systems using sequential extraction and X-ray absorption spectroscopy Texte intégral
2017
Qin, Hai-Bo | Zhu, Jian-Ming | Lin, Zhi-Qing | Xu, Wen-Po | Tan, De-Can | Zheng, Li-Rong | Takahashi, Yoshio
Selenium (Se) speciation in soil is critically important for understanding the solubility, mobility, bioavailability, and toxicity of Se in the environment. In this study, Se fractionation and chemical speciation in agricultural soils from seleniferous areas were investigated using the elaborate sequential extraction and X-ray absorption near-edge structure (XANES) spectroscopy. The speciation results quantified by XANES technique generally agreed with those obtained by sequential extraction, and the combination of both approaches can reliably characterize Se speciation in soils. Results showed that dominant organic Se (56–81%) and lesser Se(IV) (19–44%) were observed in seleniferous agricultural soils. A significant decrease in the proportion of organic Se to the total Se was found in different types of soil, i.e., paddy soil (81%) > uncultivated soil (69–73%) > upland soil (56–63%), while that of Se(IV) presented an inverse tendency. This suggests that Se speciation in agricultural soils can be significantly influenced by different cropping systems. Organic Se in seleniferous agricultural soils was probably derived from plant litter, which provides a significant insight for phytoremediation in Se-laden ecosystems and biofortification in Se-deficient areas. Furthermore, elevated organic Se in soils could result in higher Se accumulation in crops and further potential chronic Se toxicity to local residents in seleniferous areas.
Afficher plus [+] Moins [-]Phenanthrene-triggered Chlorosis is caused by elevated Chlorophyll degradation and leaf moisture Texte intégral
2017
Shen, Yu | Li, Jinfeng | Gu, Ruochen | Yue, Le | Zhan, Xinhua | Xing, Baoshan
Leaf is an important organ in responding to environmental stresses. To date, chlorophyll metabolism under polycyclic aromatic hydrocarbon (PAH) stress is still unclear. Here we reveal, for the first time, the chlorophyll metabolism of wheat seedling leaves in response to phenanthrene (a model PAH) exposure. In this study, the hydroponic experiment was employed, and the wheat seedlings were exposed to phenanthrene to observe the response at day 1, 3, 5, 7 and 9. Over the exposure time, wheat leaf color turns light. With the accumulation of phenanthrene, the concentrations of glutamate, 5-aminolevulinic acid, uroporphyrinogen III, protoporphyrin IX, Mg-protoporphyrin IX and protochlorophyllide increase while the concentrations of porphobilinogen and Chlorophyll b decrease. Also chlorophyll a content rises initially and then declines. Uroporphyrinogen III synthase and chlorophyllase are activated and porphobilinogen deaminase activity declines in the treatments. Both chlorophyll synthesis and degradation are enhanced, but the degradation rate is faster. Phenanthrene accumulation has significant and positive effects on increase of glutamate, 5-aminolevulinic acid, uroporphyrinogen III, protoporphyrin IX, Mg-protoporphyrin IX and protochlorophyllide concentrations. There is a negative correlation between phenanthrene accumulation and total chlorophyll. Additionally, the leaf moisture increases. Therefore, it is concluded that wheat leaf chlorosis results from a combination of accelerated chlorophyll degradation and elevated leaf moisture under phenanthrene exposure. Our results are helpful not only for better understanding the toxicity of PAHs to plants and crop PAH-adaptive mechanism in the environment, but also for potentially employing the changes of the chlorophyll-synthesizing precursors and enzyme activities in plant leaves as indicators of plant response to PAH pollution.
Afficher plus [+] Moins [-]Nitrogen losses to the environment following food-based digestate and compost applications to agricultural land Texte intégral
2017
Nicholson, Fiona | Bhogal, Anne | Cardenas, L. (Laura) | Chadwick, Dave | Misselbrook, T. (Tom) | Rollett, A. (Alison) | Taylor, Matt | Thorman, Rachel | Williams, John
The anaerobic digestion of food waste for energy recovery produces a nutrient-rich digestate which is a valuable source of crop available nitrogen (N). As with any ‘new’ material being recycled to agricultural land it is important to develop best management practices that maximise crop available N supply, whilst minimising emissions to the environment. In this study, ammonia (NH3) and nitrous oxide (N2O) emissions to air and nitrate (NO3−) leaching losses to water following digestate, compost and livestock manure applications to agricultural land were measured at 3 sites in England and Wales. Ammonia emissions were greater from applications of food-based digestate (c.40% of total N applied) than from livestock slurry (c.30% of total N applied) due to its higher ammonium-N content (mean 5.6 kg/t compared with 1–2 kg/t for slurry) and elevated pH (mean 8.3 compared with 7.7 for slurry). Whilst bandspreading was effective at reducing NH3 emissions from slurry compared with surface broadcasting it was not found to be an effective mitigation option for food-based digestate in this study. The majority of the NH3 losses occurred within 6 h of spreading highlighting the importance of rapid soil incorporation as a method for reducing NH3 emissions. Nitrous oxide losses from food-based digestates were low, with emission factors all less than the IPCC default value of 1% (mean 0.45± 0.15%). Overwinter NO3− leaching losses from food-based digestate were similar to those from pig slurry, but much greater than from pig farmyard manure or compost. Both gaseous N losses and NO3− leaching from green and green/food composts were low, indicating that in these terms compost can be considered as an ‘environmentally benign’ material. These findings have been used in the development of best practice guidelines which provide a framework for the responsible use of digestates and composts in agriculture.
Afficher plus [+] Moins [-]Oil uptake by plant-based sorbents and its biodegradation by their naturally associated microorganisms Texte intégral
2017
Dashti, Narjes | Ali, Nedaa | Khanafer, Majida | Radwan, Samir S.
The plant waste-products, wheat straw, corn-cobs and sugarcane bagasse took up respectively, 190, 110 and 250% of their own weights crude oil. The same materials harbored respectively, 3.6 × 105, 8.5 × 103 and 2.3 × 106 g−1 cells of hydrocarbonoclastic microorganisms, as determined by a culture-dependent method. The molecular, culture-independent analysis revealed that the three materials were associated with microbial communities comprising genera known for their hydrocarbonoclastic activity. In bench-scale experiments, inoculating oily media with samples of the individual waste products led to the biodegradation of 34.0–44.9% of the available oil after 8 months. Also plant-product samples, which had been used as oil sorbents lost 24.3–47.7% of their oil via their associated microorganisms, when kept moist for 8 months. In this way, it is easy to see that those waste products are capable of remediating spilled oil physically, and that their associated microbial communities can degrade it biologically.
Afficher plus [+] Moins [-]Occurrence of pharmaceutical, recreational and psychotropic drug residues in surface water on the northern Antarctic Peninsula region Texte intégral
2017
González-Alonso, Silvia | Moreno Merino, Luis | Esteban, Sara | López de Alda, Miren | Barceló, Damià | Durán, Juan José | López Martínez, Jerónimo | Aceña, Jaume | Pérez, Sandra | Mastroianni, Nicola | Silva, Adrián | Catalá, Myriam | Valcárcel, Yolanda
Human presence in the Antarctic is increasing due to research activities and the rise in tourism. These activities contribute a number of potentially hazardous substances. The aim of this study is to conduct the first characterisation of the pharmaceuticals and recreational drugs present in the northern Antarctic Peninsula region, and to assess the potential environmental risk they pose to the environment. The study consisted of a single sampling of ten water samples from different sources, including streams, ponds, glacier drains, and a wastewater discharge into the sea. Twenty-five selected pharmaceuticals and 21 recreational drugs were analysed. The highest concentrations were found for the analgesics acetaminophen (48.74 μg L−1), diclofenac (15.09 μg L−1) and ibuprofen (10.05 μg L−1), and for the stimulant caffeine (71.33 μg L−1). All these substances were detected in waters that were discharged directly into the ocean without any prior purification processes. The hazard quotient (HQ) values for ibuprofen, diclofenac and acetaminophen were far in excess of 10 at several sampling points. The concentrations of each substance measured and used as measured environmental concentration values for the HQ calculations are based on a one-time sampling. The Toxic Unit values indicate that analgesics and anti-inflammatories are the therapeutic group responsible for the highest toxic burden.This study is the first to analyse a wide range of substances and to determine the presence of pharmaceuticals and psychotropic drugs in the Antarctic Peninsula region. We believe it can serve as a starting point to focus attention on the need for continued environmental monitoring of these substances in the water cycle, especially in protected regions such as the Antarctic. This will determine whether pharmaceuticals and recreational drugs are hazardous to the environment and, if so, can be used as the basis for risk-assessment studies to prioritise the exposure to risk.
Afficher plus [+] Moins [-]Bioremediation of PAHs contaminated river sediment by an integrated approach with sequential injection of co-substrate and electron acceptor: Lab-scale study Texte intégral
2017
Liu, Tongzhou | Zhang, Zhen | Dong, Wenyi | Wu, Xiaojing | Wang, Hongjie
In this study, the feasibility of employing an integrated bioremediation approach in contaminated river sediment was evaluated. Sequential addition of co-substrate (acetate) and electron acceptor (NO3−) in a two-phase treatment was capable of effectively removing polycyclic aromatic hydrocarbons (PAHs) in river sediment. The residual concentration of total PAHs decreased to far below effect range low (ERL) value within 91 days of incubation, at which concentration it could rarely pose biological impairment. The biodegradation of high molecular weight PAHs were found to be mainly occurred in the sediment treated with co-substrates (i.e. acetate or methanol), in which acetate was found to be more suitable for PAHs degradation. The role of co-substrates in influencing PAHs biodegradation was tentatively discussed herein. Additionally, the sediment odorous problem and blackish appearance were intensively addressed by NO3− injection. The results of this study demonstrated that integrating two or more approaches/processes would be a helpful option in sediment remediation. It can lead to a more effective remediation performance, handle multiple contamination issues, as well as mitigate environmental risks caused by one of the single methods.
Afficher plus [+] Moins [-]