Affiner votre recherche
Résultats 581-590 de 6,548
Pilot-scale study on the effects of cyanobacterial blooms on Vallisneria natans and biofilms at different phosphorus concentrations Texte intégral
2020
Li, Qi | Gu, Peng | Luo, Xin | Zhang, Hao | Huang, Suzhen | Zhang, Jibiao | Zheng, Zheng
Cyanobacterial blooms cause potential risk to submerged macrophytes and biofilms in eutrophic environments. This pilot-scale study investigated the growth, oxidative responses, and detoxification activity of aquatic plants in response to cyanobacterial blooms under different phosphorus concentrations. Variations of extracellular polymeric substances (EPSs) and microbial community composition were also assessed. Results showed that the biomass of Vallisneria natans increased with exposure to cyanobacterial blooms at higher phosphorous concentrations (P > 0.2 mg L⁻¹). The amount of microcystin compounds (MC-LR) released into the water and the accumulation of MC-LR into both plant tissue and biofilms changed according to the phosphorus concentration. Furthermore, a certain degree of oxidative stress was induced in the plants, as evidenced by increased activity of superoxide dismutase, catalase, and peroxidase, as well as increased malondialdehyde concentrations; significant differences were also seen in acid phosphatase and glutathione S-transferase activities, as well as in glutathione concentrations. Together, these responses indicate potential mechanisms of MC-LR detoxification. Broader α-D-glucopyranose polysaccharides (PS) increased with increasing phosphorous and aggregated into clusters in biofilm EPS in response to the cyanobacterial blooms. In addition, alterations were seen in the abundance and structure of the microbial communities present in exposed biofilms. These results demonstrate that cyanobacterial blooms under different concentrations of phosphorus can induce differential responses, which can have a significant impact on aquatic ecosystems.
Afficher plus [+] Moins [-]Improvement in hourly PM2.5 estimations for the Beijing-Tianjin-Hebei region by introducing an aerosol modeling product from MASINGAR Texte intégral
2020
Zhang, Yixiao | Wang, Wei | Ma, Yingying | Wu, Lixin | Xu, Weiwei | Li, Jia
This study improves traditional PM₂.₅ estimation models by combining an hourly aerosol optical depth from the Advanced Himawari Imager onboard Himawari-8 with a newly introduced predictor to estimate hourly PM₂.₅ concentrations in the Beijing–Tianjin–Hebei (BTH) region from November 1, 2018 to October 31, 2019. The new predictor is an hourly PM₂.₅ forecasting product from the Model of Aerosol Species IN the Global AtmospheRe (MASINGAR). Comparative experiments were conducted by utilizing three extensively used regression models, namely, multiple linear regression (MLR), geographically weighted regression (GWR), and linear mixed effects (LME). A ten-fold cross validation (CV) demonstrated that the MASINGAR product significantly improved the performances of these models. The introduced product increased the model’s determination coefficients (from 0.316 to 0.379 for MLR, from 0.393 to 0.445 for GWR, and from 0.718 to 0.765 for LME), decreased their root mean square errors (from 38.2 μg/m³ to 36.4 μg/m³ for MLR, from 36.0 μg/m³ to 34.4 μg/m³ for GWR, and from 24.5 μg/m³ to 22.4 μg/m³ for LME) and mean absolute errors (from 25.2 μg/m³ to 23.3 μg/m³ for MLR, from 23.5 μg/m³ to 21.8 μg/m³ for GWR, and from 15.2 μg/m³ to 13.7 μg/m³ for LME). Then, a well-trained LME model was utilized to estimate the spatial distributions of hourly PM₂.₅ concentrations. Highly polluted localities were clustered in the central and southern areas of the BTH region, and the least polluted area was in northwestern Hebei. Seasonal PM₂.₅ levels averaged from the hourly estimations exhibited the highest concentrations (55.4 ± 56.8 μg/m³) in the winter and lowest concentrations (25.1 ± 18.2 μg/m³) in the summer.Introducing the PM₂.₅ products from MASINGAR can significantly improve the performance of traditional models for surface PM₂.₅ estimations by 7–20%.
Afficher plus [+] Moins [-]Sex-dependent locomotion and physiological responses shape the insecticidal susceptibility of parasitoid wasps Texte intégral
2020
Andreazza, Felipe | Haddi, Khalid | Nörnberg, Sandro D. | Guedes, Raul Narciso C. | Nava, Dori E. | Oliveira, Eugênio E.
The adaptive fitness of insect species can be shaped by how males and females respond, both physiologically and behaviorally, to environmental challenges, such as pesticide exposure. In parasitoid wasps, most toxicological investigations focus only on female responses (e.g., survival and especially parasitism abilities), leaving the male contributions to adaptive fitness (survival, locomotion, mate search) poorly investigated. Here, we evaluated the toxicity of the spinosyn insecticide spinosad against the South American fruit fly, Anastrepha fraterculus, and we used the parasitoid wasp Diachasmimorpha longicaudata (Ashmead) to evaluate whether sex-linked locomotory and physiological responses would influence the susceptibility of these organisms to spinosad. Our results revealed that D. longicaudata males were significantly more susceptible (median lethal time (LT₅₀) = 24 h) to spinosad than D. longicaudata females (LT₅₀ = 120 h), which may reflect the differences in their locomotory and physiological (e.g., respiratory) responses to mitigate insecticide exposure. Compared to D. longicaudata females, male wasps were lighter (P < 0.001), walked for longer distances (P < 0.001) and periods (P < 0.001), and exhibited higher sensilla densities in their tarsi (P = 0.008), which may facilitate their intoxication with the insecticide. These findings indicate that male parasitoids should not be exempt from insecticide selectivity tests, as these organisms can be significantly more affected by such environmental challenges than their female conspecifics.
Afficher plus [+] Moins [-]Short term seasonal effects of airborne fungal spores on lung function in a panel study of schoolchildren residing in informal settlements of the Western Cape of South Africa Texte intégral
2020
Olaniyan, Toyib | Dalvie, Mohamed Aqiel | Röösli, Martin | Naidoo, Rajen N. | Künzli, Nino | de Hoogh, Kees | Berman, Dilys | Parker, Bhawoodien | Leaner, Joy | Jeebhay, Mohamed F.
The individual effects of biological constituents of particulate matter (PM) such as fungal spores, on lung function in children are not well known. This study investigated the seasonal short-term effect of daily variation in Alternaria and Cladosporium fungal spores on lung function in schoolchildren.This panel study evaluated 313 schoolchildren in informal settlements of the Western Cape of South Africa, exposed to spores of two commonly encountered fungi, Alternaria and Cladosporium species. The children provided forced-expiratory volume in 1-s (FEV₁) and peak-expiratory flow (PEF) measurements thrice daily for two consecutive school-weeks in summer and winter. Daily PM₁₀ levels, from a stationary ambient air quality monitor and fungal spore levels using spore traps were measured in each study area throughout the year. The effects of Alternaria and Cladosporium spores, on lung function were analysed for lag periods up to five-days, adjusting-for PM₁₀, other pollen exposures, study area, and other host and meteorological factors. Same-day exposure-response curves were computed for both fungal species.There was more variability in Alternaria spores level with noticeable peaks in summer. There were consistent lag-effects for Alternaria on PEF compared to Cladosporium, with the largest PEF deficit observed in winter (mean deficit: 13.78 L/min, 95%CI: 24.34 to −3.23 L/min) per 10spores/m³ increase in Alternaria spores on lag day-2. Although there were no observable lag-effects for Alternaria and Cladosporium on FEV₁, same-day effects of Cladosporium spores on FEV₁ was present across both seasons. Threshold effects of Alternaria on both PEF and FEV₁ deficits were apparent at levels of 100 spores/m³, but could not be explored for Cladosporium beyond the levels observed during the study.The study provides evidence for the independent effects of daily exposure to ambient fungal spores of Alternaria and Cladosporium on lung function deficits, more especially in winter for PEF.
Afficher plus [+] Moins [-]Novel and legacy poly- and perfluoroalkyl substances (PFASs) in indoor dust from urban, industrial, and e-waste dismantling areas: The emergence of PFAS alternatives in China Texte intégral
2020
Zhang, Bo | He, Yuan | Huang, Yingyan | Hong, Danhong | Yao, Yiming | Wang, Lei | Sun, Wenwen | Yang, Baoqin | Huang, Xiongfei | Song, Shiming | Bai, Xueyuan | Guo, Yuankai | Zhang, Tao | Sun, Hongwen
With the phase out of perfluorooctanesulfonate (PFOS) and perfluorooctanoic acid (PFOA), the composition profiles of poly- and perfluoroalkyl substance (PFAS) in our living environment are unclear. In this study, 25 PFASs were analyzed in indoor dust samples collected from urban, industrial, and e-waste dismantling areas in China. PFOS alternatives, including 6:2 chlorinated polyfluorinated ether sulfonate (6:2 Cl-PFESA) (median: 5.52 ng/g) and 8:2 chlorinated polyfluorinated ether sulfonate (8:2 Cl-PFESA) (1.81 ng/g), were frequently detected. By contrast, PFOA alternatives, such as hexafluoropropylene oxide dimer acid (HPFO-DA, Gen-X) and ammonium 4,8-dioxa-3H-perfluorononanoate (ADONA), were not found in any of the dust samples. As expected, all legacy PFASs were widely observed in indoor dust, and 4 PFAS precursors were also detected. Dust concentrations of 6:2 Cl-PFESA were strongly correlated (p < 0.05) with those of 8:2 Cl-PFESA regardless of sampling sites. 6:2 Cl-PFESA was also significantly associated with that of PFOS in industrial and e-waste (p < 0.01) areas. Association analysis suggested that the sources of PFOS and its alternatives are common or related. Although ∑Cl-PFESA concentration was lower than that of PFOS (17.4 ng/g), industrial areas had the highest 6:2 Cl-PFESA/PFOS ratio (0.63). Composition profiles of PFASs in the industrial area showed the forefront of fluorine change. Thus, the present findings suggested that Cl-PFESAs are widely used as PFOS alternatives in China, and high levels of human Cl-PFESA exposure are expected in the future. Short-chain PFASs (C4–C7) were the predominant PFASs found in dust samples, contributing to over 40% of ∑total PFASs. Furthermore, perfluoro-1-butanesulfonate/PFOS and perfluoro-n-butanoic acid (PFBA)/PFOA ratios were 2.8 and 0.72, respectively. These findings suggested shifting to the short-chain PFASs in the environment in China. To the authors knowledge this is the first study to document the levels of 6:2 Cl-PFESA, 8:2 Cl-PFESA in indoor dust.
Afficher plus [+] Moins [-]Biochemical profile and gene expression of Clarias gariepinus as a signature of heavy metal stress Texte intégral
2020
Swaleh, Sadiya Binte | Banday, Umarah Zahoor | Asadi, Moneeb-Al | Usmani, Nazura
Heavy metals have been found in increasing concentrations in the aquatic environment. Fishes exposed to such metals have altered gene expression, serum profiles, tissue histology and bioindices that serve as overall health biomarkers. The heavy metals (Ni, Cd, and Cr) accumulated in water and fish tissues, were beyond the permissible limits defined by the Central Pollution Control Board/World Health Organization. Metallothionein (MT) and glutathione peroxidase (GPX) genes expression patterns highlighted the metal-specific exposure of fish. An increased fold change of genes against beta-actin serves as a potential feature for toxicity. Metal toxicity is also reflected by an increased level of digestive enzymes (amylase and lipase) in the serum and alterations in values of reproductive hormones (11-Ketotestosterone and progesterone). Total serum bilirubin attribute to the liver and biliary tract disease in fishes. Histopathological studies show cellular degeneration, breakage, vacuolization signifying the chronic stress.
Afficher plus [+] Moins [-]Ny-Ålesund-oriented organic pollutants in sewage effluent and receiving seawater in the Arctic region of Kongsfjorden Texte intégral
2020
Choi, Younghun | Kim, Kitae | Kim, Deokwon | Moon, Hyo-bang | Jeon, Junho
Ny-Ålesund, one of four permanent settlements on Spitsbergen in Svalbard, is a research town that includes scientific institutes from many countries. Because of daily-used chemicals (e.g., pharmaceutical and personal care products (PPCPs)) used by residents in the area, generated sewage is considered as a point source in the Kongsfjorden. The aim of the present study was to identify and quantify organic pollutants in the effluent and along the shoreline and offshore via target, suspect, and non-target screening using liquid chromatography–high-resolution mass spectrometry. We tentatively identified 30 compounds using the suspect and non-target screening methods in effluent samples from our first visit to the settlement in 2016. Among these, 3 were false positive, 24 were confirmed, and the 3 remaining compounds were not confirmed because of a lack of reference standards. Of the confirmed, 21 were quantifiable and considered target compounds for the 2nd year study. The quantified compounds in the effluent samples in 2017 totaled 17, including PPCPs, pesticides, perfluorinated compounds, and their metabolites. Some of the compounds, such as caffeine, paraxanthine/theophylline, acetaminophen, cetirizine, diethyl toluamide (DEET), and icaridin, were also detected in the receiving seawater. The concentration range was from 4 to 280,000 ng/L in the effluent and 2–98 ng/L in the seawater. Other 24 compounds were tentatively identified in the second-year effluent samples. Five were further confirmed using reference standards. Prioritization was performed on the 47 substances screened in Ny-Ålesund using the exposure and toxicity index. As the result, the top seven substances of concern present were perfluorooctanesulfonic acid (PFOS), triphenyl phosphate (TPHP), irbesartan, DEET, acetaminophen, caffeine, and paraxanthine/theophylline. As the effluent was identified as a source of the concerned organic pollutants, an emission reduction strategy should take place for protection of Arctic Fjorden environment.
Afficher plus [+] Moins [-]Oxygen mobility and microstructure properties-redox performance relationship of Rh/(Ce,Zr,La)O2 catalysts Texte intégral
2020
Wang, Ting | Zhou, Ren-xian
Rh/(Ce,Zr,La)O₂ (CZL) catalysts with different Ce/Zr molar ratios of 1:0, 8:1, 4:1, 2:1, 1:1, 1:2, 1:4, 1:8 and 0:1 were prepared. The relationship of microstructure, dynamic oxygen mobility and the redox properties with catalytic activity for HC, CO and NOₓ eliminations were investigated. The results demonstrate that CZL mixed oxide with Ce/Zr ratio of 1:1 exhibits the largest OSC values as 904.3 umol·g⁻¹ and structural defects. The increase of oxygen vacancies and structural defects would promote the interaction between Rh species and CZL mixed oxides, which further promotes the stabilization of RhOₓ particles and enhances the oxygen storage/release ability. Rh/CZLx catalysts with Ce/Zr molar ratio of 1:1–1:4 exhibit better catalytic activity and wider dynamic operation window due to their higher DOSC.
Afficher plus [+] Moins [-]Trace elements in sediments and fish from Atrato River: an ecosystem with legal rights impacted by gold mining at the Colombian Pacific Texte intégral
2020
Palacios-Torres, Yuber | de la Rosa, Jesus D. | Olivero-Verbel, Jesus
The Atrato watershed is a rainforest that supports exceptional wildlife species and is considered one of the most biodiversity-rich areas on the planet, currently threatened by massive gold mining. Aimed to protect this natural resource, the Constitutional Court of Colombia declared the river subject to rights. The objective of this study was to quantify trace elements in sediments and fish from Atrato watershed, assessing their environmental and human health risk. Forty-two trace elements were quantified using ICP-MS. Thirty-one elements increased their concentration downstream the river. Concentration Factors (CF) suggest sediments were moderately polluted by Cr, Cu, Cd, and strongly polluted by As. Most stations had Cr (98%) and Ni (78%) concentrations greater than the Probable Effect Concentration (PEC) criteria. Together, toxic elements generate a Pollution Load Index (PLI) and a Potential Ecological Risk Index (RI) that categorized 54% of the sediments as polluted, and 90% as moderate polluted, respectively. Hemiancistrus wilsoni, a low trophic guild fish species, had the greater average levels for Ni, Cu, As and Cd, among other elements. Rubidium and Cs showed a positive correlation with fish trophic level, suggesting these two metals biomagnify in the food chain. The Hazard Quotient (HQ) for As was greater than 1 for several species, indicating a potential risk to human health. Collectively, data suggest gold mining carried out in this biodiversity hotspot releases toxic elements that have abrogated sediment quality in Atrato River, and their incorporation in the trophic chain constitutes a large threat on environmental and human health due to fish consumption. Urgent legal and civil actions should be implemented to halt massive mining-driven deforestation to enforce Atrato River rights.
Afficher plus [+] Moins [-]Gut microbiome alterations induced by tributyltin exposure are associated with increased body weight, impaired glucose and insulin homeostasis and endocrine disruption in mice Texte intégral
2020
Zhan, Jing | Ma, Xiaoran | Liu, Donghui | Liang, Yiran | Li, Peize | Cui, Jingna | Zhou, Zhiqiang | Wang, Peng
Tributyltin (TBT), an organotin compound once widely used in agriculture and industry, has been reported to induce obesity and endocrine disruption. Gut microbiota has a strong connection with the host’s physiology. Nevertheless, the influences of TBT exposure on gut microbiota and whether TBT-influenced gut microbiota is related to TBT-induced toxicity remain unclear. To fill these gaps, ICR (CD-1) mice were respectively exposed to TBT at NOEL (L-TBT) and tenfold NOEL (H-TBT) daily by gavage for 8 weeks in the current study. The results showed that TBT exposure significantly increased body weight as well as epididymal fat, and led to adipocyte hypertrophy, dyslipidemia and impaired glucose and insulin homeostasis in mice. Additionally, TBT exposure significantly decreased the levels of T4, T3 and testosterone in serum. Also of note, TBT exposure changed gut microbiota composition mainly by decreasing Bacteroidetes and increasing Firmicutes proportions. To confirm the role of gut microbiota in TBT-induced overweight and hormonal disorders, fecal microbiota transplantation was performed and the mice receiving gut microbiota from H-TBT mice had similar phenotypes with their donor mice including significant body weight and epididymal fat gain, glucose and insulin dysbiosis and hormonal disorders. These results suggested that gut microbiome altered by TBT exposure was involved in the TBT-induced increased body weight, impaired glucose and insulin homeostasis and endocrine disruption in mice, providing significant evidence and a novel perspective for better understanding the mechanism by which TBT induces toxicity.
Afficher plus [+] Moins [-]