Affiner votre recherche
Résultats 591-600 de 4,367
Seasonal variations of temperature-related mortality burden from cardiovascular disease and myocardial infarction in China Texte intégral
2017
Yang, Jun | Zhou, Maigeng | Ou, Chun-Quan | Yin, Peng | Li, Mengmeng | Tong, Shilu | Gasparrini, Antonio | Liu, Xiaobo | Li, Jing | Cao, Lina | Wu, Haixia | Liu, Qiyong
Incidence rate of cardiovascular disease (CVD) has significant seasonal trend, being higher in winter. However, the extent to which the seasonal variation of CVD deaths was caused by temperature remains unclear. We obtained daily data on temperature and CVD and myocardial infarction (MI) mortality from nine Chinese mega-cities during 2007–2013. Distributed lag non-linear models were applied to assess the city-specific temperature-related daily excess deaths across lag 0–21 days, using the minimum-mortality temperature as reference. Then, estimates of excess deaths in four seasons were separately aggregated from the daily series, and its ratio to the corresponding total deaths produced seasonal attributable fraction (AF). In total, 1,079,622 CVD and 201,897 MI deaths were recorded in the nine Chinese cities. Significant and non-linear associations between temperature and mortality were observed, with a total of 195,516 CVD and 50,658 MI deaths attributable to non-optimum temperatures. 103,439 (95% empirical CI: 54,475–141,537) CVD and 24,613 (5891–36,279) MI deaths related to non-optimum temperature occurred in winter, compared with 15,923 (1436–28,853) and 4946 (-325-9016) in summer. Temperature-related AFs were higher among MI than CVD, with AFs of 42% (9–62%) and 35% (19–48%) in winter, and 13% (-1-23%) and 8% (1–14%) in summer, respectively. This study may have important implications for developing effective targeted intervention measures on CVD events.
Afficher plus [+] Moins [-]Zinc oxide nanoparticle toxicity in embryonic zebrafish: Mitigation with different natural organic matter Texte intégral
2017
Kteeba, Shimaa M. | El-Adawi, Hala I. | El-Rayis, Osman A. | El-Ghobashy, Ahmed E. | Schuld, Jessica L. | Svoboda, Kurt R. | Guo, Laodong
Exposure experiments were conducted to evaluate the influence of dissolved organic matter (DOM) on the toxicity of ZnO-NPs (10–30 nm) and dissolved Zn at sub-lethal doses (50 and 5 ppm, respectively) to zebrafish (Danio rerio). Humic acid, alginic acid, bovine serum albumin and various natural DOM isolated from rivers as the Milwaukee River-WI (NOMW), Yukon River-AK (NOMA) and Suwannee River-GA DOM (NOMS) were used to represent humic substances (HA), carbohydrates (CHO), proteins (PTN), and natural organic matter (NOM), respectively. Initial experiments were carried out to confirm the toxic effect of ZnO-NPs at 50 ppm, followed by mitigation experiments with different types and concentrations of DOM (0.4–40 mg-C/L). Compared to 0% hatch of 50 ppm ZnO-NPs exposed embryos at 72 h post fertilization (hpf), NOMS, NOMW and HA had the best mitigative effects on hatching (53–65%), followed by NOMA, CHO and PTN (19–35%); demonstrating that the mitigation effects on ZnO-NPs toxicity were related to DOM's quantity and composition. At 96 hpf, 20% of embryos exposed to 50 ppm ZnO-NPs hatched, 100% of embryos reared in embryo medium hatched, and close to 100% of the embryos hatched upon mitigation, except for those mitigated with PTN which had less effect. Dissolved Zn (5 ppm) also exhibited the same toxicity on embryos as ZnO-NPs (50 ppm). However, in the presence of HA, NOM and CHO, the hatching rates at 72 and 96 hpf increased significantly compared to 5% hatch without DOM. The overall mitigation effects produced by DOM followed the order of HA ≥ NOMS > NOM (A&W) > CHO >> PTN, although specific mitigation effects varied with DOM concentration and functionalities. Our results also indicate that the toxicity of ZnO-NPs to embryos was mostly derived from NPs although dissolved Zn released from ZnO-NPs also interacted with embryos, affecting hatching, but to a less extent.
Afficher plus [+] Moins [-]Gonadal intersex in smallmouth bass Micropterus dolomieu from northern Indiana with correlations to molecular biomarkers and anthropogenic chemicals Texte intégral
2017
Abdel-moneim, Ahmed | Deegan, Daragh | Gao, Jiejun | De Perre, Chloe | Doucette, Jarrod S. | Lee, Linda | Sepulveda, Maria S.
Over the past decade, studies have shown that exposure to endocrine disrupting chemicals (EDCs) can cause gonadal intersex in fish. Smallmouth bass (Micropterus dolomieu) males appear to be highly susceptible to developing testicular oocytes (TO), the most prevalent form of gonadal intersex, as observed in various areas across the U.S. In this study, prevalence and severity of TO was quantified for smallmouth bass sampled from the St. Joseph River in northern Indiana, intersex biomarkers were developed, and association between TO prevalence and organic contaminants were explored. At some sites, TO prevalence reached maximum levels before decreasing significantly after the spawning season. We examined the relationship between TO presence and expression of gonadal and liver genes involved in sex differentiation and reproductive functions (esr1, esr2, foxl2, fshr, cyp19a, star, lhr and vtg). We found that vitellogenin (vtg) transcript levels were significantly higher in the liver of males with TO, but only when sampled during the spawning season. Further, we identified a positive correlation between plasma VTG levels and vtg transcript levels, suggesting its use as a non-destructive biomarker of intersex in this species. Finally, we evaluated 43 contaminants in surface water at representative sites using passive sampling to look for contaminants with possible links to the observed intersex prevalence. No quantifiable levels of estrogens or other commonly agreed upon EDCs such as the bisphenols were observed in our contaminant assessment; however, we did find high levels of herbicides as well as consistent quantifiable levels of PFOS, PFOA, and triclosan in the watershed where high TO prevalence was exhibited. Our findings suggest that the observed TO prevalence may be the result of exposures to mixtures of nonsteroidal EDCs.
Afficher plus [+] Moins [-]The distribution of organochlorine pesticides in sediments from iSimangaliso Wetland Park: Ecological risks and implications for conservation in a biodiversity hotspot Texte intégral
2017
Buah-Kwofie, Archibold | Humphries, Marc S.
The iSimangaliso Wetland Park World Heritage site, located on the east coast of South Africa, spans ∼3300 km2 and constitutes the largest protected estuarine environment for hippopotami, crocodiles and aquatic birds in Africa. Given the ecological importance of this site and continued use of organochlorine pesticides (OCPs) in the region, this study focused on the nature, distribution and potential sources of organochlorine contamination within iSimangaliso Wetland Park. OCPs were widely distributed in surface sediment samples obtained from the four main Ramsar wetland systems within the park (Lake St Lucia, Mkhuze, Lake Sibaya and Kosi Bay). ∑HCH and ∑DDT were the dominant contaminants detected with concentrations in the range of 26.29–282.5 ng/g and 34.49–262.4 ng/g, respectively. ∑DDT concentrations revealed a distinctive gradient, with significantly higher concentrations at Kosi Bay and Lake Sibaya attributed to the application of DDT for malaria control. p,p'-DDE and p,p'-DDD were the dominant isomers detected, but the detection of p,p'-DDT in a number of samples reflects recent inputs of technical DDT. Highest concentrations of HCH, endosulfan and heptachlor were detected in sediments from Mkhuze and reflect the substantial residue load these wetlands receive from agricultural activities within the catchment area. Isomeric compositions indicate that endosulfan and heptachlor residues are derived mainly from historical application, while inputs of HCH, aldrin and endrin could be attributed to more recent usage at several sites. OCP sediment concentrations from iSimangaliso represent the highest yet recorded in South Africa and some of the highest reported globally this century. Sediments found within the lakes and wetlands of iSimangaliso represent large reservoirs of contaminants that pose ecotoxicological threats to this globally important biodiversity hotspot. Detailed investigation into the bioaccumulation and toxicological risks of OCPs within the wetland park is urgently required.
Afficher plus [+] Moins [-]The association of cancer risks with pentachlorophenol exposure: Focusing on community population in the areas along certain section of Yangtze River in China Texte intégral
2017
Cui, Yanjie | Liang, Ling | Zhong, Qi | He, Qian | Shan, Xiaomei | Chen, Keyang | Huang, Fen
Pentachlorophenol (PCP) was used in large quantities, and mainly for killing the intermediate host snails of schistosome in China, thereby resulting in ubiquitous PCP residue in the environment. However, studies considering the carcinogenicity of PCP for humans mainly focused on occupational workers, and the actual carcinogenicity of PCP for general population is uncertain. To investigate the association between cancer risks and PCP exposure in a community population, an ecological study was conducted in three contaminated areas along the Yangtze River. Standardized rate ratio (SRR) was calculated to represent the risk of cancer incidence, by using incidence in the low PCP exposure category as the reference group. A total of 15,962 cancer records were collected, and 76 water samples and 213 urine samples in three areas were examined. Our findings suggested that compared with the low PCP group, the high PCP group had significantly excessive incidences of various cancers related to different organs including lymph (SRR = 19.44, 95% CI = 15.00–25.19), blood (SRR = 17.24, 95% CI = 12.92–23.01), nasopharynx (SRR = 3.97, 95% CI = 3.75–4.21), gallbladder (SRR = 3.46, 95% CI = 3.09–3.87), pancreas (SRR = 3.41, 95% CI = 3.07–3.79), respiratory system (SRR = 3.41, 95% CI = 3.27–3.57) and liver (SRR = 3.31, 95% CI = 3.09–3.56). Taken together, our present study provides evidence that general community population exposed to high level of PCP exhibits a broader spectrum of increased cancer risks as compared to occupational groups.
Afficher plus [+] Moins [-]CO2 emissions from the 2010 Russian wildfires using GOSAT data Texte intégral
2017
Guo, Meng | Li, Jing | Xu, Jiawei | Wang, Xiufeng | He, Hongshi | Wu, Li
In the summer of 2010, more than 6 hundred wildfires broke out in western Russia because of an unprecedented intense heat wave that resulted from strong atmospheric blocking. The present study evaluated the CO2 emissions using GOSAT (Greenhouse gases Observing SATellite) data from July 23 to August 18, 2010 for western Russia. The results demonstrated that the GOSAT CAI (Cloud and Aerosol Imager) was well-suited for the identification of smoke plumes and that the GOSAT FTS (Fourier-Transform Spectrometer) TIR (Thermal InfraRed) could be used to calculate the height of the plumes at approximately 800 hPa (1.58 km). Using GOSAT data, we estimated that the 2010 fires in western Russia emitted 255.76 Tg CO2. We also calculated the CO2 emissions by employing the Biomass Burning Model (BBM) for the same study site and obtained a similar result of 261.82–302.48 Tg CO2. The present study proposes a new method for the evaluation of CO2 emissions from a wildfire using remote sensing data, which could be used to improve the knowledge of the burning of biomass at a regional or a continental scale, to reduce the uncertainties in modeling greenhouse gases emissions, and to further understand how wildfires impact the atmospheric carbon cycle and global warming.
Afficher plus [+] Moins [-]Extended biotic ligand model for predicting combined Cu–Zn toxicity to wheat (Triticum aestivum L.): Incorporating the effects of concentration ratio, major cations and pH Texte intégral
2017
Wang, Xuedong | Ji, Dongxue | Chen, Xiaolin | Ma, Yibing | Yang, Junxing | Ma, Jingxing | Li, Xiaoxiu
Current risk assessment models for metals such as the biotic ligand model (BLM) are usually applied to individual metals, yet toxic metals are rarely found singly in the environment. In the present research, the toxicity of Cu and Zn alone and together were studied in wheat (Triticum aestivum L.) using different Ca2+ and Mg2+ concentrations, pH levels and Zn:Cu concentration ratios. The aim of the study was to better understand the toxicity effects of these two metals using BLMs and toxic units (TUs) from single and combined metal toxicity data. The results of single-metal toxicity tests showed that toxicity of Cu and Zn tended to decrease with increasing Ca2+ or Mg2+ concentrations, and that the effects of pH on Cu and Zn toxicity were related not only to free Cu2+ and Zn2+ activity, respectively, but also to other inorganic metal complex species. For the metal mixture, Cu–Zn interactions based on free ion activities were primarily additive for the different Ca2+ and Mg2+ concentrations and levels of pH. The toxicity data of individual metals derived by the BLM, which incorporated Ca2+ and Mg2+ competition and toxicity of inorganic metal complexes in a single-metal toxicity assessment, could predict the combined toxicity as a function of TU. There was good performance between the predicted and observed effects (root mean square error [RMSE] = 7.15, R2 = 0.97) compared to that using a TU method with a model based on free ion activity (RMSE = 14.29, R2 = 0.86). The overall findings indicated that bioavailability models that include those biochemistry processes may accurately predict the toxicity of metal mixtures.
Afficher plus [+] Moins [-]Emissions of fine particulate nitrated phenols from the burning of five common types of biomass Texte intégral
2017
Wang, Xinfeng | Gu, Rongrong | Wang, Liwei | Xu, Wenxue | Zhang, Yating | Chen, Bing | Li, Weijun | Xue, Likun | Chen, Jianmin | Wang, Wenxing
Nitrated phenols are among the major constituents of brown carbon and affect both climates and ecosystems. However, emissions from biomass burning, which comprise one of the most important primary sources of atmospheric nitrated phenols, are not well understood. In this study, the concentrations and proportions of 10 nitrated phenols, including nitrophenols, nitrocatechols, nitrosalicylic acids, and dinitrophenol, in fine particles from biomass smoke were determined under three different burning conditions (flaming, weakly flaming, and smoldering) with five common types of biomass (leaves, branches, corncob, corn stalk, and wheat straw). The total abundances of fine nitrated phenols produced by biomass burning ranged from 2.0 to 99.5 μg m−3. The compositions of nitrated phenols varied with biomass types and burning conditions. 4-nitrocatechol and methyl nitrocatechols were generally most abundant, accounting for up to 88–95% of total nitrated phenols in flaming burning condition. The emission ratios of nitrated phenols to PM2.5 increased with the completeness of combustion and ranged from 7 to 45 ppmm and from 239 to 1081 ppmm for smoldering and flaming burning, respectively. The ratios of fine nitrated phenols to organic matter in biomass burning aerosols were comparable to or lower than those in ambient aerosols affected by biomass burning, indicating that secondary formation contributed to ambient levels of fine nitrated phenols. The emission factors of fine nitrated phenols from flaming biomass burning were estimated based on the measured mass fractions and the PM2.5 emission factors from literatures and were approximately 0.75–11.1 mg kg−1. According to calculations based on corn and wheat production in 31 Chinese provinces in 2013, the total estimated emission of fine nitrated phenols from the burning of corncobs, corn stalks, and wheat straw was 670 t. This work highlights the apparent emission of methyl nitrocatechols from biomass burning and provides basic data for modeling studies.
Afficher plus [+] Moins [-]Effects of simulated acid rain on soil fauna community composition and their ecological niches Texte intégral
2017
Wei, Hui | Liu, Wen | Zhang, Jiaen | Qin, Zhong
Acid rain is one of the severest environmental issues globally. Relative to other global changes (e.g., warming, elevated atmospheric [CO2], and nitrogen deposition), however, acid rain has received less attention than its due. Soil fauna play important roles in multiple ecological processes, but how soil fauna community responds to acid rain remains less studied. This microcosm experiment was conducted using latosol with simulated acid rain (SAR) manipulations to observe potential changes in soil fauna community under acid rain stress. Four pH levels, i.e., pH 2.5, 3.5, 4.5, and 5.5, and a neutral control of pH 7.0 were set according to the current pH condition and acidification trend of precipitation in southern China. As expected, we observed that the SAR treatments induced changes in soil fauna community composition and their ecological niches in the tested soil; the treatment effects tended to increase as acidity increased. This could be attributable to the environmental stresses (such as acidity, porosity and oxygen supply) induced by the SAR treatments. In addition to direct acidity effect, we propose that potential changes in permeability and movability of water and oxygen in soils induced by acid rain could also give rise to the observed shifts in soil fauna community composition. These are most likely indirect pathways of acid rain to affect belowground community. Moreover, we found that nematodes, the dominating soil fauna group in this study, moved downwards to mitigate the stress of acid rain. This is probably detrimental to soil fauna in the long term, due to the relatively severer soil conditions in the deep than surface soil layer. Our results suggest that acid rain could change soil fauna community and the vertical distribution of soil fauna groups, consequently changing the underground ecosystem functions such as organic matter decomposition and greenhouse gas emissions.
Afficher plus [+] Moins [-]Short-term exposure to gold nanoparticle suspension impairs swimming behavior in a widespread calanoid copepod Texte intégral
2017
Michalec, François-Gaël | Holzner, Markus | Barras, Alexandre | Lacoste, Anne-Sophie | Brunet, Loïc | Lee, Jae-seong | Slomianny, Christian | Boukherroub, Rabah | Souissi, Sami
Calanoid copepods play an important role in the functioning of marine and brackish ecosystems. Information is scarce on the behavioral toxicity of engineered nanoparticles to these abundant planktonic organisms. We assessed the effects of short-term exposure to nonfunctionalized gold nanoparticles on the swimming behavior of the widespread estuarine copepod Eurytemora affinis. By means of three-dimensional particle tracking velocimetry, we reconstructed the trajectories of males, ovigerous and non-ovigerous females. We quantified changes in their swimming activity and in the kinematics and geometrical properties of their motion, three important descriptors of the motility patterns of zooplankters. In females, exposure to gold nanoparticles in suspension (11.4 μg L−1) for 30 min caused depressed activity and lower velocity and acceleration, whereas the same exposure caused minimal effects in males. This response differs clearly from the hyperactive behavior that is commonly observed in zooplankters exposed to pollutants, and from the generally lower sensitivity of female copepods to toxicants. Accumulation of gold nanoparticles on the external appendages was not observed, precluding mechanical effects. Only very few nanoparticles appeared sporadically in the inner part of the gut in some samples, either as aggregates or as isolated nanoparticles, which does not suggest systemic toxicity resulting from pronounced ingestion. Hence, the precise mechanisms underlying the behavioral toxicity observed here remain to be elucidated. These results demonstrate that gold nanoparticles can induce marked behavioral alterations at very low concentration and short exposure duration. They illustrate the applicability of swimming behavior as a suitable and sensitive endpoint for investigating the toxicity of nanomaterials present in estuarine and marine environments. Changes in swimming behavior may impair the ability of planktonic copepods to interact with their environment and with other organisms, with possible impacts on population dynamics and community structure.
Afficher plus [+] Moins [-]