Affiner votre recherche
Résultats 611-620 de 4,896
Vertical mixing with return irrigation water the cause of arsenic enrichment in groundwater of district Larkana Sindh, Pakistan
2019
Ali, Waqar | Mushtaq, Nisbah | Javed, Tariq | Zhang, Hua | Ali, Kamran | Rasool, Atta | Farooqi, Abida
Stable isotopes ratios (‰) of Hydrogen (δ2H) and Oxygen (δ1⁸O) were used to trace the groundwater recharge mechanism and geochemistry of arsenic (As) contamination in groundwater from four selected sites (Larkana, Naudero, Ghari Khuda Buksh and Dokri) of Larkana district. The stable isotope values of δ2H and δ1⁸O range from 70.78‰ to −56.01‰ and from −10.92‰ to −7.35‰, relative to Vienna Standard for Mean Ocean Water (VSMOW) respectively, in all groundwater samples, thus indicating the recharge source of groundwater from high-salinity older water. The concentrations of As in all groundwater samples were ranged from 2 μg/L to 318 μg/L, with 67% of samples exhibited As levels exceeding than that of World Health Organization (WHO) permissible limit 10 μg/L and 42% of samples expressed the As level exceeding than that of the National Environmental Quality Standard (NEQS) 50 μg/L. The leaching and vertical mixing with return irrigation water are probably the main processes controlling the enrichment of As in groundwater of Larkana, Naudero, Ghari Khuda Buksh and Dokri. The weathering of minerals mostly controlled the overall groundwater chemistry; rock-water interactions and silicate weathering generated yielded solutions that were saturated in calcite and dolomite in two areas while halite dissolution is prominent with high As area.
Afficher plus [+] Moins [-]Using scrap zero valent iron to replace dissolved iron in the Fenton process for textile wastewater treatment: Optimization and assessment of toxicity and biodegradability
2019
GilPavas, Edison | Correa-Sánchez, Santiago | Acosta, Diego A.
A Fenton like advanced oxidation process (AOP) employing scrap zerovalent iron (SZVI) and hydrogen peroxide (H2O2) was studied for industrial textile wastewater treatment from a textile manufacturing plant located at Medellín, Colombia (South America). The wastewater effluent studied contains a mixture of organic compounds resistant to conventional treatments. The effect of initial pH and SZVI concentration and H2O2 concentration were studied by a response surface methodology (RSM) Box-Behnken design of experiment (BBD). The combined SZVI/H2O2 process led to reductions of 95% color, 76% of chemical oxygen demand (COD) and 71% of total organic carbon (TOC) at optimal operating conditions of pH = 3, SZVI = 2000 mg/L and [H2O2] = 24.5 mM. Molecular weight distribution measurement (MWD), ultraviolet–visible (UV–Vis) spectroscopy, HPLC, biodegradability and toxicity were used to characterize the pollutants after the treatment process finding that the resulting effluent was polluted mostly by low molecular weight carboxylic acids. A remarkable biodegradability enhancement of the effluent was evidenced by a BOD5/COD ratio increase from 0.22 to 0.4; also, the SZVI/H2O2 process successfully reduced the toxicity from 60% to 20% of dead A. Salina crustaceans.
Afficher plus [+] Moins [-]Wing membrane and fur samples as reliable biological matrices to measure bioaccumulation of metals and metalloids in bats
2019
Mina, Rúben | Alves, Joana | Silva, António Alves da | Natal-da-Luz, Tiago | Cabral, João A. | Barros, Paulo | Topping, Christopher J. | Sousa, José Paulo
There is a growing conservation concern about the possible consequences of environmental contamination in the health of bat communities. Most studies on the effects of contaminants in bats have been focused on organic contaminants, and the consequences of bat exposure to metals and metalloids remain largely unknown. The aim of this study was to evaluate the suitability of external biological matrices (fur and wing membrane) for the assessment of exposure and bioaccumulation of metals in bats. The concentration of arsenic, cadmium, cobalt, chromium, copper, manganese, nickel, lead, selenium and zinc was measured in internal organs (liver, heart, brain), internal (bone) and external tissues (wing membrane, fur) collected from bat carcasses of four species (Hypsugo savii, Nyctalus leisleri, Pipistrellus pipistrellus, Pipistrellus pygmaeus) obtained in windfarm mortality searches. With the exception of zinc (P = 0.223), the results showed significant differences between the concentrations of metals in the analyzed tissues for all metals (P < 0.05). Significant differences were also found between organs/tissues (P < 0.001), metals (P < 0.001) and a significant interaction between organs/tissues and metals was found (P < 0.001). Despite these results, the patterns in terms of metal accumulation were similar for all samples. Depending on the metal, the organ/tissue that showed the highest concentrations varied, but fur and wing had the highest concentrations for most metals. The variability obtained in terms of metal concentrations in different tissues highlights the need to define standardized methods capable of being applied in monitoring bat populations worldwide. The results indicate that wing membrane and fur, biological matrices that may be collected from living bats, yield reliable results and may be useful for studies on bats ecotoxicology, coupled to a standardized protocol for large-scale investigation of metal accumulation.
Afficher plus [+] Moins [-]Combined spatial and retrospective analysis of fluoroalkyl chemicals in fluvial sediments reveal changes in levels and patterns over the last 40 years
2019
Mourier, B. | Labadie, P. | Desmet, M. | Grosbois, C. | Raux, J. | Debret, M. | Copard, Y. | Pardon, P. | Budzinski, H. | Babut, M.
Bed sediments and a dated sediment core were collected upstream and downstream from the city of Lyon (France) to assess the spatial and temporal trends of contamination by per- and polyfluoroalkyl substances (PFASs) in this section of the Rhône River. Upstream from Lyon, concentrations of total PFASs (ΣPFASs) in sediments are low (between 0.19 and 2.6 ng g⁻¹ dry weight - dw), being characterized by a high proportion of perfluorooctane sulfonate (PFOS). Downstream from Lyon, and also from a fluoropolymer manufacturing plant, ΣPFASs concentrations reach 48.7 ng g⁻¹ dw. A gradual decrease of concentrations is reported at the coring site further downstream (38 km). Based on a dated sediment core, the temporal evolution of PFASs is reconstructed from 1984 to 2013. Prior to 1987, ΣPFASs concentrations were low (≤2 ng g⁻¹ dw), increasing to a maximum of 51 ng g⁻¹ dw in the 1990s and then decreasing from 2002 to the present day (∼10 ng g⁻¹ dw). In terms of the PFAS pattern, the proportion of perfluoroalkyl sulfonic acids (PFSAs) has remained stable since the 1980s (∼10%), whereas large variations are reported for carboxylic acids (PFCAs). Long chain- (C > 8) PFCAs characterized by an even number of perfluorinated carbons represent about 74% of the total PFAS load until 2005. However, from 2005 to 2013, the relative contribution of long chain- (C > 8) PFCAs with an odd number of perfluorinated carbons reaches 80%. Such changes in the PFAS pattern likely highlight a major shift in the industrial production process. This spatial and retrospective study provides valuable insights into the long-term contamination patterns of PFAS chemicals in river basins impacted by both urban and industrial activities.
Afficher plus [+] Moins [-]Inflammatory and functional responses after (bio)diesel exhaust exposure in allergic sensitized mice. A comparison between diesel and biodiesel
2019
Timmerman, Tirza | de Brito, Jôse Mára | de Almeida, Natalia Madureira | de Almeida, Francine Maria | Arantes-Costa, Fernanda Magalhães | Guimaraes, Eliane Tigre | Lichtenfels, Ana Julia Faria Coimbra | Rivero, Dolores Helena Rodriguez Ferreira | de Oliveira, Regiani Carvalho | de Lacerda, João Paulo Amorim | Moraes, Jamille Moreira | Pimental, Danilo Augusto | Saraiva-Romanholo, Beatriz Mangueira | Saldiva, Paulo H. N. (Paulo Hilário Nascimento) | Vieira, Rodolfo de Paula | Mauad, Thais
Many cities fail to meet air quality standards, which results in increased risk for pulmonary disorders, including asthma. Human and experimental studies have shown that diesel exhaust (DE) particles are associated with worsening of allergic asthma. Biodiesel (BD), a cleaner fuel from renewable sources, was introduced in the eighties. Because of the reduction in particulate matter (PM) emissions, BD was expected to cause fewer adverse pulmonary effects. However, only limited data on the effect of BD emissions in asthma are available.Determine whether BD exhaust exposure in allergic sensitized mice leads to different effects on inflammatory and functional responses compared to DE exposure.Balb/C mice were orotracheally sensitized with House Dust Mite (HDM) or a saline solution with 3 weekly instillations. From day 9 until day 17 after sensitization, they were exposed daily to filtered air (FA), DE and BD exhaust (concentration: 600 μg/m³ PM₂.₅). Lung function, bronchoalveolar lavage fluid (BALF) cell counts, cytokine levels (IL-2, IL-4, IL-5, IL-17, TNF-α, TSLP) in the BALF, peribronchiolar eosinophils and parenchymal macrophages were measured.HDM-sensitized animals presented increased lung elastance (p = 0.046), IgG1 serum levels (p = 0.029), peribronchiolar eosinophils (p = 0.028), BALF levels of total cells (p = 0.020), eosinophils (p = 0.028), IL-5 levels (p = 0.002) and TSLP levels (p = 0.046) in BALF. DE exposure alone increased lung elastance (p = 0.000) and BALF IL-4 levels (p = 0.045), whereas BD exposure alone increased BALF TSLP levels (p = 0.004). BD exposure did not influence any parameters after HDM challenge, while DE exposed animals presented increased BALF levels of total cells (p = 0.019), lymphocytes (p = 0.000), neutrophils (p = 0.040), macrophages (p = 0.034), BALF IL-4 levels (p = 0.028), and macrophagic inflammation in the lung tissue (p = 0.037), as well as decreased IgG1 (p = 0.046) and IgG2 (p = 0.043) levels when compared to the HDM group.The results indicate more adverse pulmonary effects of DE compared to BD exposure in allergic sensitized animals.
Afficher plus [+] Moins [-]Differences in quantity and composition of leaf particulate matter and morphological structures in three evergreen trees and their association in Harbin, China
2019
Xu, Haijun | Wang, Wenjie | Wang, Huimei | Sun, Yufeng | Zhong, Zhaoliang | Wang, Shurui
Urban trees have been assumed to effectively clean air particulate matter (PM), while the inter-species differences are not yet well defined, especially the PM chemical composition. In this study, PM from leaf surface and wax layer of 3 evergreen tree species (Juniper: Juniperus rigida; Black pine: Pinus tabuliformis var. mukdeais; Spruce: Picea koraiensis) were used for finding differences in PM adsorption and its compositional traits (characterized by X-ray diffraction, X-ray photoelectron spectroscopy, Fourier transform infrared spectrum and Inductively coupled plasma-optical emission spectrometry). Possible improvement in PM removal was also evaluated by a detail whole city tree census and different scenarios of species adjustment data. We found that: 1) the amount of PM on juniper leaves was 5.73 g m−2, 2–2.5-fold higher than black pine and spruce (p < 0.05). Of them, 38.73%, 38.22%, and 23.11% were in the wax layer. 2) Compared with the explicit interspecies differences in PM quantity, more complex interspecies difference showed different patterns for different compositional traits. In general, leaf surface PM had higher O, Si, Al, Fe, N, Pb, Cu, Ni, Cr, and Cd, while the wax PM had higher C and Na contents (p < 0.05). 3) Association ordination found that the smaller leaf size, lower leaf water content, higher leaf area per unit mass, higher wax content, and larger stomatal openness aligned with the more PM adsorption by leaf, together with the higher amounts of CO stretching, O, Si, Al, N, heavy metals of Pb, Cu, Ni, Cr, and Cd in PM. 4) Compared with the other 2 species, increase of juniper percentage in urban forests is more effective for maximizing PM removal from air, accompanying more heavy metal removal but less crystalized minerals in PM. Our findings highlight that proper species configuration in urban afforestation could maximize the air PM removal capacity.
Afficher plus [+] Moins [-]Accumulation and transformation of heavy metals in surface sediments from the Yangtze River estuary to the East China Sea shelf
2019
Liu, Ming | Chen, Jingbo | Sun, Xueshi | Hu, Zhizhou | Fan, Dejiang
The concentration and speciation of heavy metals (Cu, Co, Ni, Zn, Cr, Pb and Cd) were studied in surface sediment from the Yangtze River(YR)to the East China Sea (ECS) shelf. The results showed that high contents of metals were found in the YR estuary (YRE) and in the nearshore muddy area, while lower concentrations were found in the YR channel and the ECS shelf. However, after standardization, the total content of most heavy metals from the YR showed little change or slightly increased during the transport process from the river to the estuary but decreased significantly outside the estuary, especially in the sediments of the ECS shelf. The residual fraction is the dominant fraction for all the metals, while the oxidizable and reducible fractions are the most important forms of the nonlithogenic fractions. The total amount of heavy metals from the YR to the continental shelf is mainly affected by the filtration of the estuary and the barrier impacts of the coastal current in the ECS. The environmental physicochemical conditions that vary significantly in the turbidity zone greatly influence the associated forms of metals. The metals in the acid-soluble fraction are mostly affected by the pH change in the sediment and the discharge of human activities, while the reducible fraction is significantly affected by the bottom water DO. The oxidizable fraction was affected by oxidation-reduction potential (ORP), primary productivity, as well as OM content. Therefore, with changes in the physicochemical conditions of the environment, the metals have undergone significant changes in their speciation from the YR to the ECS shelf. Various complex effects in the estuary area have not only a large filtration effect on the total amount of metals but also a major impact on the geochemical forms of the metals.
Afficher plus [+] Moins [-]Toxicological effects of two organic ultraviolet filters and a related commercial sunscreen product in adult corals
2019
He, Tangtian | Tsui, Mirabelle Mei Po | Tan, Chih Jui | Ma, Chui Ying | Yiu, Sam King Fung | Wang, Lixue | Chen, Te Hao | Fan, Tung Yung | Lam, Paul Kwan Sing | Murphy, Margaret Burkhardt
Corals are exposed to organic ultraviolet (UV) filters and other personal care product (PCP) ingredients in the environment, but the toxicities of organic UV filters and their related PCP to corals are not well understood. In this study, 7-day exposures were conducted to evaluate the toxicities and bioaccumulation of two organic UV filters, ethylhexylmethoxy-cinnamate (EHMC; octinoxate) and octocrylene (OC) (single- and combined-chemical tests), and diluted sunscreen wash-off water containing both active ingredients to the adult life stage of two hard coral species, Seriatopora caliendrum and Pocillopora damicornis. In the single-chemical tests, death (33.3%) and bleaching (83.3%) were only observed in the 1000 μg/L EHMC treatment of S. caliendrum. In the sunscreen product exposures, 5% sunscreen water (containing 422.34 ± 37.34 μg/L of EHMC and 33.50 ± 7.60 μg/L of OC at Day 0) caused high mortality in S. caliendrum (66.7–83.3%) and P. damicornis (33.3–50%), and tissue concentrations were up to 10 times greater than in the single-chemical exposures; co-exposure to EHMC and OC at similar levels to those in the sunscreen product resulted in bioaccumulation similar to the single-chemical tests. These results confirm the bioaccumulation potential of EHMC and OC and show that other ingredients in sunscreen products may increase the bioavailability of active ingredients to corals and exacerbate the toxicity of sunscreen products. Future studies on the toxicities of PCPs to aquatic organisms should not only focus on the toxicities of active ingredients.
Afficher plus [+] Moins [-]Metal/metalloid and phosphorus characteristics in porewater associated with manganese geochemistry: A case study in the Jiulong River Estuary, China
2019
Pan, Feng | Liu, Huatai | Guo, Zhanrong | Cai, Yu | Fu, Yuyao | Wu, Jinye | Wang, Bo | Gao, Aiguo
Sediment porewater can be an important source of contaminants in the overlying water, but the mechanisms of metal(loid) and phosphorus (P) remobilization remain to be investigated. In this study, high-resolution dialysis (HR-Peeper) and diffusive gradients in thin films (DGT) samplers were used to determine the porewater dissolved iron (Fe), manganese (Mn), cobalt (Co), chromium (Cr), vanadium (V), selenium (Se), arsenic (As), P and DGT-Labile S in coastal sediments in the Jiulong River Estuary (JRE), China. The results showed that high concentrations of dissolved Mn, Se and P were present in the overlying water, indicating potential water pollution with excessive amounts of Mn, Se and P. The dissolved Mn concentrations in the porewater were higher than the dissolved Fe concentrations, especially at submerged sites, demonstrating that Mn(III/IV) reduction is the dominant diagenetic pathway for organic carbon (OC) degradation, which directly affects Fe cycling by the competitive inhibition of Fe(III) reduction and Fe(II) reoxidation. Dissolved Co, Cr, V, Se, As and P show significant positive correlations with Mn but nearly no correlations with Fe, suggesting that the mobility of these metal(loid)s and P is associated with Mn but not Fe cycling in this region. In addition, the coelevated concentrations of the metal(loid)s, P and Mn at the submerged sites are attributed to the strengthened Mn reduction coupled with OC degradation fueled by hypoxia. The higher positive diffusion fluxes of Mn, Se and P were consistent with the excess Mn, Se and P concentrations in the overlying water, together with the approximately positive fluxes of the other metal(loid)s, indicating that sediment Mn(III/IV) reduction and concomitant metal(loid) and P remobilization might be vital pathways for metal(loid) and P migration to the overlying water.
Afficher plus [+] Moins [-]An empirical method for source apportionment of black carbon aerosol: Results from Aethalometer observations at five different locations in India
2019
Ravi Kiran, V. | Venkat Ratnam, M. | Krishna Murthy, B.V. | Kant, Yogesh | Prasad, P. | Roja Raman, M. | Rao, S.V.B. | Lakshmi Kumar, T.V. | Maitra, Animesh
Black carbon (BC) aerosol emitted in incomplete combustion processes is known for causing warming in the climate system also poses serious health issues. Identification of the sources of BC is essential for the development of mitigation strategies to regulate their effects in changing climate. Among different observational and analytical techniques currently available, source apportionment methods based on optical measurements are relatively simple. For example, ‘Aethalometer model’ was developed based on Aethalometer observations. However, there are a few limitations with this model arising from assumption of wavelength and angstrom exponent pairs. We have developed an empirical method which also relies on Aethalometer observations named as ‘Two alpha method’ which assumes angstrom exponent from fossil fuel as 1 and estimates bio-mass fraction and angstrom exponent for bio-mass burning. This method has been applied to Aethalometer observations from five different locations (rural, semi-urban and urban) over Indian sub-continent to quantify sources of BC. Fossil fuel is found to be the major source of BC (∼70%) irrespective of the location. Collocated measurements of Carbon Monoxide (CO) over rural site correlated well with derived bio-mass fraction. Results from this study demonstrated the capabilities of empirical method and shall provide spatio-temporal variability in sources of BC if applied to more locations.
Afficher plus [+] Moins [-]