Affiner votre recherche
Résultats 651-660 de 5,098
Occurrence of microplastics in the water column and sediment in an inland sea affected by intensive anthropogenic activities
2018
Dai, Zhenfei | Zhang, Haibo | Zhou, Qian | Tian, Yuan | Chen, Tao | Du, Zhen | Fu, Chuancheng | Luo, Yongming
Microplastics may lose buoyancy and occur in deeper waters and ultimately sink to the sediment and this may threaten plankton inhabiting in various water layers and benthic organisms. Here, we conduct the first survey on microplastics in the water column and corresponding sediment in addition to the surface water in the Bohai Sea. A total of 20 stations covering whole Bohai Sea were selected, which included 6 stations specified for water column studying. Seawater was sampled every 5 m, with maximal depth of 30 m in the water column using Niskin bottles coupled with a ship-based conductivity, temperature and depth sensor (CTD) system and surface sediment samples were collected using box corer. The results indicated that higher microplastic levels accumulated at a depth range of 5–15 m in the water column in some stations, suggesting the surface water survey was not sufficient to reflect microplastics loading in a water body. Fibers predominated microplastic types in both seawater and sediment of the Bohai Sea, which accounted for 75%–96.4% of the total microplastics. However the relatively proportion of the fibers in the deeper water layers and sediment was lower than that in the surface water. Microplastic shapes are more diverse in the sediment than in the seawater in general. The microplastic sizes changed with depth in the water column and the proportion of the size-fraction < 300 μm increased with depth, probably as a result of rapid biofouling on the small microplastics due to their higher specific surface area. Such depth distribution also implied that sampling with manta net (>330 μm) that commonly used in the oceanographic survey might underestimate microplastics abundance in the water column. Further studies are recommended to focus on the sinking behavior of microplastics and their effects on marine organisms.
Afficher plus [+] Moins [-]Causes of ozone pollution in summer in Wuhan, Central China
2018
Zeng, P. | Lyu, X.P. | Guo, H. | Cheng, H.R. | Jiang, F. | Pan, W.Z. | Wang, Z.W. | Liang, S.W. | Hu, Y.Q.
In August 2016, continuous measurements of volatile organic compounds (VOCs) and trace gases were conducted at an urban site in Wuhan. Four high-ozone (O3) days and twenty-seven non-high-O3 days were identified according to the China's National Standard Level II (∼100 ppbv). The occurrence of high-O3 days was accompanied by tropical cyclones. Much higher concentrations of VOCs and carbon monoxide (CO) were observed on the high-O3 days (p < 0.01). Model simulations revealed that vehicle exhausts were the dominant sources of VOCs, contributing 45.4 ± 5.2% and 37.3 ± 2.9% during high-O3 and non-high-O3 days, respectively. Both vehicle exhausts and stationary combustion made significantly larger contributions to O3 production on high-O3 days (p < 0.01). Analysis using a chemical transport model found that local photochemical formation accounted for 74.7 ± 5.8% of the daytime O3, around twice the regional transport (32.2 ± 5.4%), while the nighttime O3 was mainly attributable to regional transport (59.1 ± 9.9%). The local O3 formation was generally limited by VOCs in urban Wuhan. To effectively control O3 pollution, the reduction ratio of VOCs to NOx concentrations should not be lower than 0.73, and the most efficient O3 abatement could be achieved by reducing VOCs from vehicle exhausts. This study contributes to the worldwide database of O3-VOC-NOx sensitivity research. Its findings will be helpful in formulating and implementing emission control strategies for dealing with O3 pollution in Wuhan.
Afficher plus [+] Moins [-]Potential human exposures to neonicotinoid insecticides: A review
2018
Zhang, Q. | Li, Z. | Chang, C.H. | Lou, J.L. | Zhao, M.R. | Lu, C.
Due to their systemic character and high efficacy to insect controls, neonicotinoid insecticides (neonics) have been widely used in global agriculture since its introduction in early 1990. Recent studies have indicated that neonics may be ubiquitous, have longer biological half-lives in the environment once applied, and therefore implicitly suggested the increasing probability for human exposure to neonics. Despite of neonics’ persistent characters and widespread uses, scientific literature in regard of pathways in which human exposure could occur is relatively meager. In this review, we summarized results from peer-reviewed articles published prior to 2017 that address potential human exposures through ingestion and inhalation, as well as results from human biomonitoring studies. In addition, we proposed the use of relative potency factor approach in order to facilitate the assessment of concurrent exposure to a mixture of neonics with similar chemical structures and toxicological endpoints. We believe that the scientific information that we presented in this review will aid to future assessment of total neonic exposure and subsequently human health risk characterization.
Afficher plus [+] Moins [-]Age-dependent antioxidant responses to the bioconcentration of microcystin-LR in the mysid crustacean, Neomysis awatschensis
2018
Min, Byung-Hwa | Ravikumar, Yuvaraj | Lee, Do-Hee | Choi, Kwang Seek | Kim, Bo-Mi | Rhee, Jae-Sung
Microcystins (MCs) are naturally occurring algal toxins in the aquatic environment and pose a serious threat to the ecosystem. In general, aquatic populations are structured by organisms of different ages, with varying degrees of biochemical and physiological responses. In this study, juvenile and adult marine mysids (Neomysis awatschensis) were exposed to MC-Leucine Arginine (MC-LR) (0.1, 1, and 10 μg L⁻¹) for 7 days, and the bioconcentration dynamics and responses of antioxidant defense system were measured during the exposure and additional depuration periods (7 days). MC-LR bioconcentrated in a dose-dependent manner, from a threshold concentration of 1 μg L⁻¹ in both stages, and the levels reduced gradually during the depuration phase. Bioconcentration patterns of MC-LR were highly age-specific, as juvenile mysids showed peaks during the exposure period, whereas adults exhibited a peak on the first day of depuration. After exposure to 10 μg L⁻¹ concentration, elevated levels of malondialdehyde (MDA) and glutathione (GSH) were observed during the late (days 5 and 7) exposure and early (days 1 and 3) depuration periods in juvenile mysids, while adult mysids showed a peak on day 7 of the exposure period. Age-specific responses were also observed in the enzymatic activities of glutathione S-transferase (GST), catalase (CAT), superoxide dismutase (SOD), glutathione peroxidase (GPx), and glutathione reductase (GR). Juvenile mysids showed a significant elevation in all enzymatic activities during the exposure and/or depuration phase upon exposure to 10 μg L⁻¹ MC-LR, but only CAT and SOD enzymes showed significant changes during the exposure and/or depuration periods in adults. Overall, our results indicate the bioconcentration potential of MC-LR and its threshold in the marine mysid, in addition to age-specific MC-LR dynamics and subsequent biochemical responses.
Afficher plus [+] Moins [-]Airborne microplastics: Consequences to human health?
2018
Prata, Joana Correia
Microplastics have recently been detected in atmospheric fallout in Greater Paris. Due to their small size, they can be inhaled and may induce lesions in the respiratory system dependent on individual susceptibility and particle properties. Even though airborne microplastics are a new topic, several observational studies have reported the inhalation of plastic fibers and particles, especially in exposed workers, often coursing with dyspnea caused by airway and interstitial inflammatory responses. Even though environmental concentrations are low, susceptible individuals may be at risk of developing similar lesions. To better understand airborne microplastics risk to human health, this work summarizes current knowledge with the intention of developing awareness and future research in this area.
Afficher plus [+] Moins [-]Adsorption and regeneration of expanded graphite modified by CTAB-KBr/H3PO4 for marine oil pollution
2018
Xu, Congbin | Jiao, Chunlei | Yao, Ruihua | Lin, Aijun | Jiao, Wentao
The cleaning-up of viscous oil spilled in ocean is a global challenge, especially in Bohai, due to its slow current movement and poor self-purification capacity. Frequent oil-spill accidents not only cause severe and long-term damages to marine ecosystems, but also lead to a great loss of valuable resources. To eliminate the environmental pollution of oil spills, an efficient and environment-friendly oil-recovery approach is necessary. In this study,¹expanded graphite (EG) modified by CTAB-KBr/H₃PO₄ was synthesized via composite intercalation agents of CTAB-KBr and natural flake graphite, followed by the activation of phosphoric acid at low temperature. The resultant modified expanded graphite (M-EG) obtained an interconnected and continuous open microstructure with lower polarity surface, more and larger pores, and increased surface hydrophobicity. Due to these characteristics, M-EG exhibited a superior adsorption capacity towards marine oil. The saturated adsorption capacities of M-EG were as large as 7.44 g/g for engine oil, 6.12 g/g for crude oil, 5.34 g/g for diesel oil and 4.10 g/g for gasoline oil in 120min, exceeding the capacity of pristine EG. Furthermore, M-EG maintained good removal efficiency under different adsorption conditions, such as temperature, oil types, and sodium salt concentration. In addition, oils sorbed into M-EG could be recovered either by a simple compression or filtration-drying treatment with a recovery ratio of 58–83%. However, filtration-drying treatment shows better performance in preserving microstructures of M-EG, which ensures the adsorbents can be recycled several times. High removal capability, fast adsorption efficiency, excellent stability and good recycling performance make M-EG an ideal candidate for treating marine oil pollution in practical application.
Afficher plus [+] Moins [-]Prevalence of antibiotic resistance genes from effluent of coastal aquaculture, South Korea
2018
Jang, Hyun Min | Kim, Young Beom | Choi, Sangki | Lee, Yunho | Shin, Seung Gu | Unno, Tatsuya | Kim, Young Mo
The wide use of antibiotics in aquaculture for prophylactic and therapeutic purposes can potentially lead to the prevalence of antibiotic resistance genes (ARGs). This study reports for the first time the profile of ARGs from effluents of coastal aquaculture located in South Jeolla province and Jeju Island, South Korea. Using quantitative PCR (qPCR), twenty-two ARGs encoding tetracycline resistance (tetA, tetB, tetD, tetE, tetG, tetH, tetM, tetQ, tetX, tetZ, tetBP), sulfonamide resistance (sul1, sul2), quinolone resistance (qnrD, qnrS, aac(6′)-Ib-cr), β-lactams resistance (blaTEM, blaCTX, blaSHV), macrolide resistance (ermC), florfenicol resistance (floR) and multidrug resistance (oqxA) and a class 1 integrons-integrase gene (intI1) were quantified. In addition, Illumina Miseq sequencing was applied to investigate microbial community differences across fish farm effluents. Results from qPCR showed that the total number of detected ARGs ranged from 4.24 × 10⁻³ to 1.46 × 10⁻² copies/16S rRNA gene. Among them, tetB and tetD were predominant, accounting for 74.8%–98.0% of the total ARGs. Furthermore, intI1 gene showed positive correlation with tetB, tetD, tetE, tetH, tetX, tetZ tetQ and sul1. Microbial community analysis revealed potential host bacteria for ARGs and intI1. Two genera, Vibrio and Marinomonas belonging to Gammaproteobacteria, showed significant correlation with tetB and tetD, the most dominant ARGs in all samples. Also, operational taxonomic units (OTUs)-based network analysis revealed that ten OTUs, classified into the phyla Proteobacteria, Cyanobacteria/Chloroplast, Bacteroidetes, Verrucomicrobia and an unclassified phylum, were potential hosts of tetracycline resistance genes (i.e., tetA, tetG, tetH, tetM, tetQ and tetZ). Further systematic monitoring of ARGs is warranted for risk assessment and management of antibacterial resistance from fish farm effluents.
Afficher plus [+] Moins [-]Major and minor elemental compositions of streambed biofilms and its implications of riverine biogeochemical cycles
2018
Mori, Naoki | Sugitani, Kenichiro | Yamamoto, Mariko | Tomioka, Rie | Sato, Miyako | Harada, Naomi
Chemical compositions of streambed biofilms from a major river of central Japan (the Kushida River) were obtained, with data of associated sediments (fine-grained fractions < 63 μm) and dissolved components of waters, in order to provide preliminary information about biogeochemical significance of streambed biofilms. During the sampling period (July 31st to August 3rd, 2013), dissolved components of the river waters were influenced by the dam reservoir. Concentrations of NO₃⁻, silica (as Si), SO₄²⁻, PO₄³⁻ and Ca²⁺ decreased across the dam, whereas Fe and Mn increased across the dam, and then decreased downstream rapidly. Streambed biofilms contain significant amount of non-nutrient elements such as Al (up to 21% as Al₂O₃ on water and others-free basis), indicating that they are contaminated as siliciclatic (silt and clay) materials. Siliciclastic materials in the biofilms are basically compositionally similar to fine-grained (<63 μm) fractions of streambed sediments. However, some elements such as Ca, P, Mn, and Zn are markedly enriched in the biofilms. Particularly, Mn concentrations in the biofilm samples collected just below the dam reservoir are very high (∼4.0 wt %), probably due to accumulation from the discharged water. Concentrations of trace elements such as P, Cr, Cu, Zn and V appear to be controlled by amounts of Fe-oxides and/or Mn-oxides in biofilms. Numbers of factors are involved in controlling chemical compositions of streambed biofilms, including amount of contaminated siliciclastics, authigenic mineral formation, adsorption of dissolved materials and microbial metabolisms. As demonstrated by this study, systematic analyses including major elements and comparison with associated sediments and waters could reveal biogeochemistry of this complex system.
Afficher plus [+] Moins [-]Seasonal cycles of secondary organic aerosol tracers in rural Guangzhou, Southern China: The importance of atmospheric oxidants
2018
Yuan, Qi | Lai, Senchao | Song, Junwei | Ding, Xiang | Zheng, Lishan | Wang, Xinming | Zhao, Yan | Zheng, Junyu | Yue, Dingli | Zhong, Liuju | Niu, Xiaojun | Zhang, Yingyi
Thirteen secondary organic aerosol (SOA) tracers of isoprene (SOAI), monoterpenes (SOAM), sesquiterpenes (SOAS) and aromatics (SOAA) in fine particulate matter (PM2.5) were measured at a Pearl River Delta (PRD) regional site for one year. The characteristics including their seasonal cycles and the factors influencing their formation in this region were studied. The seasonal patterns of SOAI, SOAM and SOAS tracers were characterized over three enhancement periods in summer (I), autumn (II) and winter (III), while the elevations of SOAA tracer (i.e., 2,3-dihydroxy-4-oxopentanoic acid, DHOPA) were observed in Periods II and III. We found that SOA formed from different biogenic precursors could be driven by several factors during a one-year seasonal cycle. Isoprene emission controlled SOAI formation throughout the year, while monoterpene and sesquiterpene emissions facilitated SOAM and SOAS formation in summer rather than in other seasons. The influence of atmospheric oxidants (Ox) was found to be an important factor of the formation of SOAM tracers during the enhancement periods in autumn and winter. The formation of SOAS tracer was influenced by the precursor emissions in summer, atmospheric oxidation in autumn and probably also by biomass burning in both summer and winter. In this study, we could not see the strong contribution of biomass burning to DHOPA as suggested by previous studies in this region. Instead, good correlations between observed DHOPA and Ox as well as [NO2][O3] suggest the involvement of both ozone (O3) and nitrogen dioxide (NO2) in the formation of DHOPA. The results showed that regional air pollution may not only increase the emissions of aromatic precursors but also can greatly promote the formation processes.
Afficher plus [+] Moins [-]Embryonic exposure to benzo(a)pyrene inhibits reproductive capability in adult female zebrafish and correlation with DNA methylation
2018
Gao, Dongxu | Lin, Jing | Ou, Kunlin | Chen, Ying | Li, Hongbin | Dai, Qinhua | Yu, Zhenni | Zuo, Zhenghong | Wang, Chonggang
This study was conducted to investigate the effects of embryonic short-term exposure to benzo(a)pyrene (BaP), a model polycyclic aromatic hydrocarbon, on ovarian development and reproductive capability in adult female zebrafish. In 1-year-old fish after embryonic exposure to BaP for 96 h, the gonadosomatic indices and the percentage of mature oocytes were significantly decreased in the 0.5, 5 and 50 nmol/L treatments. The spawned egg number, the fertilization rate and the hatching success were significantly reduced, while the malformation rate of the F1 unexposed larvae were increased. The mRNA levels of follicle-stimulating hormone, luteinizing hormone, ovarian cytochrome P450 aromatase cyp19a1a and cyp19b, estrogen receptor esr1 and esr2, and hepatic vitellogenin vtg1 and vtg2 genes, were down-regulated in adult female zebrafish that were exposed to BaP during embryonic stage. Both 17β-estradiol and testosterone levels were reduced in the ovary of adult females. The methylation levels of the gonadotropin releasing hormone (GnRH) gene gnrh3 were significantly increased in the adult zebrafish brain, and those of the GnRH receptor gene gnrhr3 were elevated both in the larvae exposed to BaP and in the adult brain, which might cause the down-regulation of the mRNA levels of gnrh3 and gnrhr3. This epigenetic change caused by embryonic exposure to BaP might be a reason for physiological changes along the brain–pituitary–gonad axis. These results suggest that short-term exposure in early life should be included and evaluated in any risk assessment of pollutant exposure to the reproductive health of fish.
Afficher plus [+] Moins [-]