Affiner votre recherche
Résultats 651-660 de 6,535
Sorption of dispersed petroleum hydrocarbons by activated charcoals: Effects of oil dispersants
2020
Ji, Haodong | Xie, Wenbo | Liu, Wen | Liu, Xiaona | Zhao, Dongye
Marine oil spill often causes contamination of drinking water sources in coastal areas. As the use of oil dispersants has become one of the main practices in remediation of oil spill, the effect of oil dispersants on the treatment effectiveness remains unexplored. Specifically, little is known on the removal of dispersed oil from contaminated water using conventional adsorbents. This study investigated sorption behavior of three prototype activated charcoals (ACs) of different particle sizes (4–12, 12–20 and 100 mesh) for removal of dispersed oil hydrocarbons, and effects of two model oil dispersants (Corexit EC9500A and Corexit EC9527A). The oil content was measured as n-alkanes, polycyclic aromatic hydrocarbons (PAHs), and total petroleum hydrocarbons (TPHs). Characterization results showed that the smallest AC (PAC100) offered the highest BET surface area of 889 m2/g and pore volume of 0.95 cm3/g (pHPZC = 6.1). Sorption kinetic data revealed that all three ACs can efficiently adsorb Corexit EC9500A and oil dispersed by the two dispersants (DWAO-I and DWAO-II), and the adsorption capacity followed the trend: PAC100 > GAC12 × 20 > GAC4 × 12. Sorption isotherms confirmed PAC100 showed the highest adsorption capacity for dispersed oil in DWAO-I with a Freundlich KF value of 10.90 mg/g∙(L/mg)1/n (n = 1.38). Furthermore, the presence of Corexit EC9500A showed two contrasting effects on the oil sorption, i.e., adsolubilization and solubilization depending on the dispersant concentration. Increasing solution pH from 6.0 to 9.0 and salinity from 2 to 8 wt% showed only modest effect on the sorption. The results are useful for effective treatment of dispersed oil in contaminated water and for understanding roles of oil dispersants.
Afficher plus [+] Moins [-]Developing the environmentally friendly technologies of combustion of gas hydrates. Reducing harmful emissions during combustion
2020
Misyura, S.Y.
In recent years, there has been a sharp increase in interest in the development of environmentally friendly technology for burning methane gas hydrate. In addition to solving energy problems, gas hydrates will help to make significant progress in solving environmental problems. The use of gas hydrate combustion technology is shown to reduce harmful emissions. In this work, experimental studies on the combustion of double hydrate powder of propane-methane have been performed at five different ways of combustion organization. Powder heating was realized using: 1) induction heating; 2) radiation and convective heating; 3) using a hot metal body; 4) combustion without forced gas flow and 5) combustion in the presence of forced and free air convection. Currently there has been neither a comprehensive study of the combustion of double gas hydrates, nor a comparison of the combustion efficiency for different methods; besides, no data on emissions have been obtained. The maximum dissociation rate is implemented with the use of induction heating. Using a gas analyzer the concentration of gases during the gas hydrate combustion has been measured. Comparison of different ways of combustion allows optimizing the combustion efficiency of gas hydrates.
Afficher plus [+] Moins [-]Recent advances in the removal of persistent organic pollutants (POPs) using multifunctional materials:a review
2020
Sun, Bohua | Li, Qianqian | Zheng, Minghui | Su, Guijin | Lin, Shijing | Wu, Mingge | Li, Chuanqi | Wang, Qingliang | Tao, Yuming | Dai, Lingwen | Qin, Yi | Meng, Bowen
Persistent organic pollutants (POPs) have gained heightened attentions in recent years owing to their persistent property and hazard influence on wild life and human beings. Removal of POPs using varieties of multifunctional materials have shown a promising prospect compared with conventional treatments. Herein, three main categories, including thermal degradation, electrochemical remediation, as well as photocatalytic degradation with the use of diverse catalytic materials, especially the recently developed prominent ones were comprehensively reviewed. Kinetic analysis and underlying mechanism for various POPs degradation processes were addressed in detail. The review also systematically documented how catalytic performance was dramatically affected by the nature of the material itself, the structure of target pollutants, reaction conditions and treatment techniques. Moreover, the future challenges and prospects of POPs degradation by means of multiple multifunctional materials were outlined accordingly. Knowing this is of immense significance to enhance our understanding of POPs remediation procedures and promote the development of novel multifunctional materials.
Afficher plus [+] Moins [-]β-catenin mediates fluoride-induced aberrant osteoblasts activity and osteogenesis
2020
Chu, Yanru | Gao, Yanhui | Yang, Yanmei | Liu, Yang | Guo, Zining | Wang, Limei | Huang, Wei | Wu, Liaowei | Sun, Dianjun | Gu, Weikuan
Excess fluoride in drinking water is an environmental issue of increasing worldwide concern, because of its adverse effect on human health. Skeletal fluorosis caused by chronic exposure to excessive fluoride is a metabolic bone disease characterized by accelerated bone turnover accompanied by aberrant activation of osteoblasts. It is not clear whether Wnt/β-catenin signaling, an important signaling pathway regulating the function of osteoblasts, mediates the pathogenesis of skeletal fluorosis. A cross-sectional case-control study was conducted in Tongyu County, Jilin Province, China showed that fluoride stimulated the levels of OCN and OPG, resulting in accelerated bone turnover in patients with skeletal fluorosis. To investigate the influence of fluoride on Wnt/β-catenin signaling pathway, 64 male BALB/c mice were allotted randomly to four groups and treated with deionized water containing 0, 55, 110 and 221 mg/L NaF for 3 months, respectively. The results demonstrated that fluoride significantly increased mouse cancellous bone formation and the protein expression of Wnt3a, phospho-GSK3β (ser 9) and Runx2. Moreover, partial correlation analysis indicated that there was no significant correlation between fluoride exposure and Runx2 protein levels, after adjusting for β-catenin, suggesting that β-catenin might play a crucial role in fluoride-induced aberrant osteogenesis. In vivo, viability of SaoS2 cells was significantly facilitated by 4 mg/L NaF, and fluoride could induce the abnormal activation of Wnt/β-catenin signaling, the expression of its target gene Runx2 and significantly increased Tcf/Lef reporter activity. Importantly, inhibition of β-catenin suppressed fluoride-induced Runx2 protein expression and the osteogenic phenotypes. Taken together, the present study provided in vivo and in vitro evidence reveals a potential mechanism for fluoride-induced aberrant osteoblast activation and indicates that β-catenin is the pivot molecule mediating viability and differentiation of osteoblasts and might be a therapeutic target for skeletal fluorosis.
Afficher plus [+] Moins [-]Nano-FeS incorporated into stable lignin hydrogel: A novel strategy for cadmium removal from soil
2020
Liu, Yonglin | Huang, Yongdong | Zhang, Cong | Li, Wenyan | Chen, Chengyu | Zhang, Zhen | Chen, Huayi | Wang, Jinjin | Li, Yongtao | Zhang, Yulong
Strategies for reducing cadmium (Cd) content in polluted farmland soils are currently limited. A type of composite with nanoparticles incorporated into a hydrogel have been developed to efficiently remove heavy metals from sewage, but their application in soils faces challenges, such as organic hydrogel degradation due to oxygen exposure and slow Cd²⁺ release from soil constituents. To overcome these challenges, a composite with superior stability for long-term application in soil is required. In this study, ferrous sulfide (FeS) nanoparticle@lignin hydrogel composites were developed. The lignin-based hydrogels inherited lignin’s natural mechanical and environmental stability and the FeS nanoparticles efficiently adsorbed Cd²⁺ and enhanced Cd²⁺ desorption from soils by producing H⁺. The high sorption capacity (833.3 g kg⁻¹) of the composite was attributed to four proposed mechanisms, including cadmium sulfide (CdS) precipitation via chemical reaction (84.06%), lignin complexation (13.19%), hydrogel swelling (0.61%), and nanoparticle sorption (2.15%). In addition, Fe²⁺ displaced from the composite was gradually oxidized to form solid iron oxide hydroxide, which increased Cd²⁺ sorption. The composite significantly reduced the total, surfactant-soluble, and fixed Cd in heavily and lightly polluted paddy soils by 22.4–49.6%, 13.5–68.6%, and 40.1–16.6%, respectively, in 7 days.
Afficher plus [+] Moins [-]Impacts of a local music festival on fish stress hormone levels and the adjacent underwater soundscape
2020
An understudied consequence of coastal urbanization on marine environments is sound pollution. While underwater anthropogenic sounds are recognized as a threat to aquatic organisms, little is known about the effects of above-surface coastal sound pollution on adjacent underwater soundscapes and the organisms inhabiting them. Here, the impact of noise from the 2019 Ultra Music Festival® in Miami, FL, USA was assessed at the University of Miami Experimental Hatchery (UMEH) located directly adjacent to the music festival and on underwater sound levels in Bear Cut, a nearby water channel. In addition, stress hormone levels in fish held at UMEH were measured before and during the festival. Air sound levels recorded at UMEH during the Ultra Music Festival did not exceed 72 dBA and 98 dBC. The subsurface sound intensity levels in the low frequency band increased by 2–3 dB re 1 μPa in the adjacent waterway, Bear Cut, and by 7–9 dB re 1 μPa in the fish tanks at UMEH. Gulf toadfish (Opsanus beta) housed in the UMEH tanks experienced a 4–5 fold increase in plasma cortisol, their main stress hormone, during the first night of the Ultra Music Festival compared to two baseline samples taken 3 weeks and 4 days before Ultra. While this study offers preliminary insights into this type of sound pollution, more research is needed to conclude if Ultra caused a stress response in wild organisms and to fully understand the implications of this type of sound pollution.
Afficher plus [+] Moins [-]Confidence intervals and sample size for estimating the prevalence of plastic debris in seabird nests
2020
Evidence is accumulating about the impacts of plastics on marine life. The prevalence of plastics in seabird nests has been used as an indicator of levels of this pollutant in the ocean. However, the lack of a framework for defining sample sizes and errors associated with estimating the prevalence of plastic in nests prevents researchers from optimising time and reducing impacts of fieldwork. We present a method to determine the confidence intervals for the prevalence of debris in seabird nests and provide, for the first time, information on the prevalence of these items in nests of the Hartlaub’s gull Larus hartlaubii, the African penguin Spheniscus demersus, the great white pelican Pelecanus onocrotalus, and the white-breasted cormorant Phalacrocorax lucidus in South Africa. The method, based on observations and resampling simulations and tested here for nests of 12 seabird species from 15 locations worldwide, allows for straightforward hypothesis testing. Appropriate sample sizes can be defined by combining this method with a Bayesian approach. We show that precise estimates of prevalence of debris in nests can be obtained by sampling around 250 nests. Smaller sample sizes can be useful for obtaining rough estimates. For the Hartlaub’s gull, the African penguin, the great white pelican, and the white-breasted cormorant, debris were present in 0.75%, 3.00%, 6.41%, and 25.62% of the respective nests. Our approach will help researchers to determine errors associated with the prevalence of debris recorded in seabird nests and to optimise time and costs spent collecting data. It can also be applied to estimate confidence intervals and define sample sizes for assessing prevalence of plastic ingestion by any organism.
Afficher plus [+] Moins [-]Short-term effect of PM1 on hospital admission for ischemic stroke: A multi-city case-crossover study in China
2020
Chen, Lijun | Zhang, Yongming | Zhang, Wenyi | Chen, Gongbo | Lü, Peng | Guo, Yuming | Li, Shanshan
This study aims to examine the association between short-term exposures to PM₁, PM₂.₅ and PM₁₀ (particulate matter with aerodynamic diameters ≤1 μm, ≤2.5 μm and ≤10 μm, respectively) and hospital admission for ischemic stroke in China. Daily counts of hospital admission for ischemic stroke were collected in 5 hospitals in China during November 2013 to October 2015. Daily concentrations of PM₁, PM₂.₅ and PM₁₀ were collected in 5 cities where the hospitals were located. A time-stratified case-crossover design was used to examine the hospital-specific PM-ischemic stroke association after controlling for potential confounders. Then the effect estimates were pooled using a random-effect meta-analysis. A total of 68,122 hospital admissions for ischemic stroke were identified from 5 hospitals during the study period. The pooled results showed that exposures to PM₁, PM₂.₅ and PM₁₀ were significantly associated with increased hospital admission for ischemic stroke on the current day and previous 1 day. The RRs (relative risk associated with per 10 μg/m³ increase in each pollutant) and 95%CIs (confidence intervals) for the cumulative effects of PM₁, PM₂.₅ and PM₁₀ on ischemic stroke during lag 0–1 days were 1.014 (1.005, 1.0023), 1.007 (1.000, 1.014) and 1.005 (1.001, 1.009), respectively. In total, 3.5%, 3.6% and 4.1% of hospital admissions for ischemic stroke could be attributable to PM₁, PM₂.₅ and PM₁₀, respectively. Exposures to ambient PM₁, PM₂.₅ and PM₁₀ pollution showed acute adverse effects on hospital admission for ischemic stroke. The health effects of PM₁ should be considered by policy-makers.
Afficher plus [+] Moins [-]Antibiotic body burden of elderly Chinese population and health risk assessment: A human biomonitoring-based study
2020
Zhu, Yitian | Liu, Kaiyong | Zhang, Jingjing | Liu, Xinji | Yang, Linsheng | Wei, Rong | Wang, Sufang | Zhang, Dongmei | Xie, Shaoyu | Tao, Fangbiao
Recently, the widespread use of antibiotic has raised concerns about the potential health risks associated with their microbiological effect. In the present study, we investigated 990 elderly individuals (age ≥ 60 years) from the Cohort of Elderly Health and Environment Controllable Factors in West Anhui, China. A total of 45 representative antibiotics and two antibiotic metabolites were monitored in urine samples through liquid chromatography electrospray tandem mass spectrometry. The results revealed that 34 antibiotics were detected in 93.0% of all urine samples and the detection frequencies of each antibiotic varied between 0.2% and 35.5%. The overall detection frequencies of seven human antibiotics (HAs), 10 veterinary antibiotics (VAs), three antibiotics preferred as HAs (PHAs), and 14 preferred as VAs (PVAs) in urines were 27.4%, 62.9%, 30.9% and 72.7%, respectively. Notably, the samples with concentrations of six PVAs (sulfamethoxazole, trimethoprim, oxytetracycline, danofloxacin, norfloxacin and lincomycin) above 5000 ng/mL accounted for 1.7% of all urine samples. Additionally, in 62.7% of urine samples, the total antibiotic concentration was in the range of the limits of detection to 20.0 ng/mL. Furthermore, the elderly individuals with the sum of estimated daily intakes of VAs and PVAs more than 1 μg/kg/day accounted for 15.2% of all participants, and a health risk related to change in gut microbiota under antibiotic stimulation was expected in 6.7% of the elderly individuals. Especially, ciprofloxacin was the foremost contributor to the health risk, and its hazard quotient value was more than one in 3.5% of all subjects. Taken together, the elderly Chinese people were extensively exposed to VAs, and some elderly individuals may have a health risk associated with dysbiosis of the gut microbiota.
Afficher plus [+] Moins [-]Contaminant screening and tissue distribution in the critically endangered Brazilian guitarfish Pseudobatos horkelii
2020
Elasmobranchs are particularly prone to accumulating contaminants due to their life history patterns and relatively high trophic position. However, several compounds, especially contaminants of emerging concern, have still not been well studied in this group. Here, we aimed to determine the occurrence and concentrations of several inorganic and organic contaminants in different tissues of the Brazilian guitarfish Pseudobatos horkelii. This species is a critically endangered species, endemic from the Southwest Atlantic which uses southern Brazilian waters as a nursery habitat. Polycyclic aromatic hydrocarbons (PAHs), emerging pesticides, pharmaceutical and personal care products (PPCPs) and trace metals were determined in five biological tissues in order to assess the accumulation and organotropism of these compounds. Except for chlorothalonil and triclosan, all compounds were detected in, at least, one tissue, mostly in liver samples. All compounds differed among tissues, with liver presenting the higher concentrations of several contaminants, followed by muscle and gills. PAHs and PPCPs were the most detected analytes and presented the highest concentrations among tissues. Diclofenac levels were determined, for the first time in elasmobranchs, and were relatively high, when compared to other fishes. Finally, relatively high concentrations of PAHs, dichlofluanid and octocrylene in muscle might be suggestive of chronic exposure, presenting also human health implications. Regarding trace metals, contrary to most elasmobranch studies, Hg levels were low in all tissues, whereas Cd and Pb here higher in liver, and gills and blood samples, respectively. Our results indicate that P. horkelii is exposed to several organic and inorganic which might affect this species in a long-term scale. Concerning the determination of emerging contaminants, it is likely that other elasmobranchs are also exposed to these compounds and special attention should be given to this issue in order to predict future effects on this group.
Afficher plus [+] Moins [-]