Affiner votre recherche
Résultats 661-670 de 4,043
The plasticizer bisphenol A affects somatic and sexual development, but differently in pipid, hylid and bufonid anurans Texte intégral
2016
Tamschick, Stephanie | Rozenblut-Kościsty, Beata | Ogielska, Maria | Kekenj, David | Gajewski, Franz | Kruger, Angela | Kloas, Werner | Stöck, Matthias.
Due to their terrestrial habitats and aquatic reproduction, many amphibians are both very vulnerable and highly suitable bioindicators. The plasticizer bisphenol A (BPA) is one of the most produced chemical substances worldwide, and knowledge on its impacts on humans and animals is mounting. BPA is used for the industrial production of polycarbonate plastics and epoxy resins and found in a multitude of consumer products. Studies on BPA have involved mammals, fish and the fully aquatic anuran model Xenopus laevis. However, our knowledge about the sexual development of non-model, often semi-terrestrial anuran amphibians remains poor. Using a recently developed experimental design, we simultaneously applied BPA to two non-model species (Hyla arborea, Hylidae; Bufo viridis, Bufonidae) and the model X. laevis (Pipidae), compared their genetic and phenotypic sex for detection of sex reversals, and studied sexual development, focusing on anatomical and histological features of gonads. We compared three concentrations of BPA (0.023, 2.28 and 228 μg/L) to control groups in a high-standard flow-through-system, and tested whether conclusions, drawn from the model species, can be extrapolated to non-model anurans. In contrast to previous studies on fish and Xenopus, often involving dosages much higher than most environmental pollution data, we show that BPA causes neither the development of mixed sex nor of sex-reversed individuals (few, seemingly BPA-independent sex reversals) in all focal species. However, environmentally relevant concentrations, as low as 0.023 μg/L, were sufficient to provoke species-specific anatomically and histologically detectable impairments of gonads, and affected morphological traits of metamorphs. As the intensity of these effects differed between the three species, our data imply that BPA diversely affects amphibians with different evolutionary history, sex determination systems and larval ecologies. These results highlight the role of amphibians as a sensitive group that is responsive to environmental pollution.
Afficher plus [+] Moins [-]Temperature modulates phototrophic periphyton response to chronic copper exposure Texte intégral
2016
Lambert, Anne Sophie | Dabrin, Aymeric | Morin, Soizic | Gahou, Josiane | Foulquier, Arnaud | Coquery, Marina | Pesce, Stéphane
Temperature modulates phototrophic periphyton response to chronic copper exposure Texte intégral
2016
Lambert, Anne Sophie | Dabrin, Aymeric | Morin, Soizic | Gahou, Josiane | Foulquier, Arnaud | Coquery, Marina | Pesce, Stéphane
Streams located in vineyard areas are highly prone to metal pollution. In a context of global change, aquatic systems are generally subjected to multi-stress conditions due to multiple chemical and/or physical pressures. Among various environmental factors that modulate the ecological effects of toxicants, special attention should be paid to climate change, which is driving an increase in extreme climate events such as sharp temperature rises. In lotic ecosystems, periphyton ensures key ecological functions such as primary production and nutrient cycling. However, although the effects of metals on microbial communities are relatively well known, there is scant data on possible interactions between temperature increase and metal pollution. Here we led a study to evaluate the influence of temperature on the response of phototrophic periphyton to copper (Cu) exposure. Winter communities, collected in a 8 °C river water, were subjected for six weeks to four thermal conditions in microcosms in presence or not of Cu (nominal concentration of 15 μg L⁻¹). At the initial river temperature (8 °C), our results confirmed the chronic impact of Cu on periphyton, both in terms of structure (biomass, distribution of algal groups, diatomic composition) and function (photosynthetic efficiency). At higher temperatures (13, 18 and 23 °C), Cu effects were modulated. Indeed, temperature increase reduced Cu effects on algal biomass, algal class proportions, diatom assemblage composition and photosynthetic efficiency. This reduction of Cu effects on periphyton may be related to lower bioaccumulation of Cu and/or to selection of more Cu-tolerant species at higher temperatures.
Afficher plus [+] Moins [-]Temperature modulates phototrophic periphyton response to chronic copper exposure | Modulation par la température de la réponse du périphyton à une exposition chronique au cuivre Texte intégral
2016
Lambert, A.S. | Dabrin, A. | Morin, Soizic | Gahou, J. | Foulquier, A. | Coquery, Marina | Pesce, Stéphane | Milieux aquatiques, écologie et pollutions (UR MALY) ; Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA) | Ecosystèmes aquatiques et changements globaux (UR EABX) ; Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA) | Centre National de la Recherche Scientifique (CNRS)
[Departement_IRSTEA]Eaux [TR1_IRSTEA]BELCA | International audience | Streams located in vineyard areas are highly prone to metal pollution. In a context of global change, aquatic systems are generally subjected to multi-stress conditions due to multiple chemical and/or physical pressures. Among various environmental factors that modulate the ecological effects of toxicants, special attention should be paid to climate change, which is driving an increase in extreme climate events such as sharp temperature rises. In lotic ecosystems, periphyton ensures key ecological functions such as primary production and nutrient cycling. However, although the effects of metals on microbial communities are relatively well known, there is scant data on possible interactions between temperature increase and metal pollution. Here we led a study to evaluate the influence of temperature on the response of phototrophic periphyton to copper (Cu) exposure. Winter communities, collected in a 8 °C river water, were subjected for six weeks to four thermal conditions in microcosms in presence or not of Cu (nominal concentration of 15 mg L-1). At the initial river temperature (8 °C), our results confirmed the chronic impact of Cu on periphyton, both in terms of structure (biomass, distribution of algal groups, diatomic composition) and function (photosynthetic efficiency). At higher temperatures (13, 18 and 23 °C), Cu effects were modulated. Indeed, temperature increase reduced Cu effects on algal biomass, algal class proportions, diatom assemblage composition and photosynthetic efficiency. This reduction of Cu effects on periphyton may be related to lower bioaccumulation of Cu and/or to selection of more Cu-tolerant species at higher temperatures.
Afficher plus [+] Moins [-]Occurrence, profiles, and toxic equivalents of chlorinated and brominated polycyclic aromatic hydrocarbons in E-waste open burning soils Texte intégral
2016
Nishimura, Chiya | Horii, Yuichi | Tanaka, Shuhei | Asante, Kwadwo Ansong | Ballesteros, Florencio | Viet, Pham Hung | Itai, Takaaki | Takigami, Hidetaka | Tanabe, Shinsuke | Fujimori, Takashi
We conducted this study to assess the occurrence, profiles, and toxicity of chlorinated polycyclic aromatic hydrocarbons (Cl-PAHs) and brominated polycyclic aromatic hydrocarbons (Br-PAHs) in e-waste open burning soils (EOBS). In this study, concentrations of 15 PAHs, 26 Cl-PAHs and 14 Br-PAHs were analyzed in EOBS samples. We found that e-waste open burning is an important emission source of Cl-PAHs and Br-PAHs as well as PAHs. Concentrations of total Cl-PAHs and Br-PAHs in e-waste open burning soil samples ranged from 21 to 2800 ng/g and from 5.8 to 520 ng/g, respectively. Compared with previous studies, the mean of total Cl-PAH concentrations of the EOBS samples in this study was higher than that of electronic shredder waste, that of bottom ash, and comparable to fly ash from waste incinerators in Korea and Japan. The mean of total Br-PAH concentrations of the EOBS samples was generally three to four orders of magnitude higher than those in incinerator bottom ash and comparable to incinerator fly ash, although the number of Br-PAH congeners measured differed among studies. We also found that the Cl-PAH and Br-PAH profiles were similar among all e-waste open burning soil samples but differed from those in waste incinerator fly ash. The profiles and principal component analysis results suggested a unique mechanism of Cl-PAH and Br-PAH formation in EOBS. In addition, the Cl-PAHs and Br-PAHs showed high toxicities equivalent to PCDD/Fs measured in same EOBS samples when calculated based on their relative potencies to benzo[a]pyrene. Along with chlorinated and brominated dioxins and PAHs, Cl-PAHs and Br-PAHs are important environmental pollutants to investigate in EOBS.
Afficher plus [+] Moins [-]Occurrence, distribution and seasonal variation of organophosphate flame retardants and plasticizers in urban surface water in Beijing, China Texte intégral
2016
Shi, Yali | Gao, Lihong | Li, Wenhui | Wang, Yuan | Liu, Jiemin | Cai, Yaqi
The occurrence, spatial distribution and seasonal variation of 14 organophosphate esters (OPEs) were investigated in urban surface water (river and lake water) from July 2013 to June 2014 in Beijing, China. Sewage influent and effluent samples, as well as rainwater and road runoff samples were also analyzed as the potential sources of OPEs in surface water. Tris(2-chloro-1-methylethyl) phosphate (TCPP) and tris(2-chloroethyl) phosphate (TCEP) were the most abundant OPEs with the average concentrations of 291 ng L⁻¹ and 219 ng L⁻¹, respectively. Relatively high concentrations of OPEs were detected in rivers located at southern and eastern urban of Beijing, which was probably attributed to the treated and untreated sewage discharge. Besides, higher levels of OPEs were observed in urban surface water in the summer, and the wet deposition (rainfall) was confirmed to be an important factor for this observation. Risk assessment showed low or medium risk of OPEs for the organisms (algae, crustacean and fish).
Afficher plus [+] Moins [-]Fugacity gradients of hydrophobic organics across the air-water interface measured with a novel passive sampler Texte intégral
2016
Wu, Chen-Chou | Yao, Yao | Bao, Lian-Jun | Wu, Feng-Chang | Wong, Charles S. | Tao, Shu | Zeng, E. Y. (Eddy Y.)
Mass transfer of hydrophobic organic contaminants (HOCs) across the air-water interface is an important geochemical process controlling the fate and transport of HOCs at the regional and global scales. However, few studies have characterized concentration or fugacity profiles of HOCs near both sides of the air-water interface, which is the driving force for the inter-compartmental mass transfer of HOCs. Herein, we introduce a novel passive sampling device which is capable of measuring concentration (and therefore fugacity) gradients of HOCs across the air-water interface. Laboratory studies indicated that the escaping fugacity values of polycyclic aromatic hydrocarbons (PAHs) from water to air were negatively correlated to their volatilization half-lives. Results for field deployment were consistent between the passive sampler and an active method, i.e., a combination of grab sampling and liquid-liquid extraction. In general, the fugacity profiles of detected PAHs were indicative of an accumulation mechanism in the surface microlayer of the study regions (Haizhu Lake and Hailing Bay of Guangdong Province, China), while p,p'-DDD tended to volatilize from water to the atmosphere in Hailing Bay. Furthermore, the fugacity profiles of the target analytes increased towards the air-water interface, reflecting the complexity of environmental behavior of the target analytes near the air-water interface. Overall, the passive sampling device provides a novel means to better characterize the air-water diffusive transfer of HOCs, facilitating the understanding of the global cycling of HOCs.
Afficher plus [+] Moins [-]Adsorption and desorption of dissolved organic matter by carbon nanotubes: Effects of solution chemistry Texte intégral
2016
Engel, Maya | Chefetz, Benny
Increasing use of carbon nanotubes (CNTs) has led to their introduction into the environment where they can interact with dissolved organic matter (DOM). This study focuses on solution chemistry effects on DOM adsorption/desorption processes by single-walled CNTs (SWCNTs). Our data show that DOM adsorption is controlled by the attachment of DOM molecules to the SWCNTs, and that the initial adsorption rate is dependent on solution parameters. Adsorbed amount of DOM at high ionic strength was limited, possibly due to alterations in SWCNT bundling. Desorption of DOM performed at low pH resulted in additional DOM adsorption, whereas at high pH, adsorbed DOM amount decreased. The extent of desorption conducted at increased ionic strength was dependent on pre-adsorbed DOM concentration: low DOM loading stimulated additional adsorption of DOM, whereas high DOM loading facilitated release of adsorbed DOM. Elevated ionic strength and increased adsorbed amount of DOM reduced the oxidation temperature of the SWCNTs, suggesting that changes in the assembly of the SWCNTs had occurred. Moreover, DOM-coated SWCNTs at increased ionic strength provided fewer sites for atrazine adsorption. This study enhances our understanding of DOM–SWCNT interactions in aqueous systems influenced by rapid changes in salinity, and facilitates potential use of SWCNTs in water-purification technologies.
Afficher plus [+] Moins [-]Repeated exposures to roadside particulate matter extracts suppresses pulmonary defense mechanisms, resulting in lipid and protein oxidative damage Texte intégral
2016
Pardo, Michal | Porat, Ziv | Rudich, Assaf | Schauer, James J. | Rudich, Yinon
Exposure to particulate matter (PM) pollution in cities and urban canyons can be harmful to the exposed population. However, the underlying mechanisms that lead to health effects are not yet elucidated. It is postulated that exposure to repeated, small, environmentally relevant concentrations can affect lung homeostasis. This study examines the impact of repeated exposures to urban PM on mouse lungs with focus on inflammatory and oxidative stress parameters. Aqueous extracts from collected urban PM were administered to mice by 5 repeated intra-tracheal instillations (IT). Multiple exposures, led to an increase in cytokine levels in both bronchoalveolar lavage fluid and in the blood serum, indicating a systemic reaction. Lung mRNA levels of antioxidant/phase II detoxifying enzymes decreased by exposure to the PM extract, but not when metals were removed by chelation. Finally, disruption of lung tissue oxidant-inflammatory/defense balance was evidenced by increased levels of lipid and protein oxidation. Unlike response to a single IT exposure to the same dose and source of extract, multiple exposures result in lung oxidative damage and a systemic inflammatory reaction. These could be attributed to compromised capacity to activate the protective Nrf2 tissue defense system. It is suggested that water-soluble metals present in urban PM, potentially from break and tire wear, may constitute major drivers of the pulmonary and systemic responses to multiple exposure to urban PM.
Afficher plus [+] Moins [-]Hazardous indoor CO2 concentrations in volcanic environments Texte intégral
2016
Viveiros, Fátima | Gaspar, J. L. (João L.) | Ferreira, Teresa | Silva, Catarina
Carbon dioxide is one of the main soil gases released silently and permanently in diffuse degassing areas, both in volcanic and non-volcanic zones. In the volcanic islands of the Azores (Portugal) several villages are located over diffuse degassing areas. Lethal indoor CO2 concentrations (higher than 10 vol %) were measured in a shelter located at Furnas village, inside the caldera of the quiescent Furnas Volcano (S. Miguel Island). Hazardous CO2 concentrations were detected not only underground, but also at the ground floor level. Multivariate regression analysis was applied to the CO2 and environmental time series recorded between April 2008 and March 2010 at Furnas village. The results show that about 30% of the indoor CO2 variation is explained by environmental variables, namely barometric pressure, soil water content and wind speed. The highest indoor CO2 concentrations were recorded during bad weather conditions, characterized by low barometric pressure together with rainfall periods and high wind speed. In addition to the spike-like changes observed on the CO2 time series, long-term oscillations were also identified and appeared to represent seasonal variations. In fact, indoor CO2 concentrations were higher during winter period when compared to the dry summer months. Considering the permanent emission of CO2 in various volcanic regions of the world, CO2 hazard maps are crucial and need to be accounted by the land-use planners and authorities.
Afficher plus [+] Moins [-]Cross-sectional association between exposure to particulate matter and inflammatory markers in the Japanese general population: NIPPON DATA2010 Texte intégral
2016
Michikawa, Takehiro | Okamura, Tomonori | Nitta, Hiroshi | Nishiwaki, Yuji | Takebayashi, Toru | Ueda, Kayo | Kadota, Aya | Fujiyoshi, Akira | Ohkubo, Takayoshi | Ueshima, Hirotsugu | Okayama, Akira | Miura, Katsuyuki
A suggestive mechanism behind the association between particulate matter and cardiovascular disease is inflammatory response. Earlier population-based studies investigating the association between particulate matter and inflammatory biological markers, in particular C-reactive protein (CRP), showed inconsistent results. In addition, evidence from the Asian population, in which CRP levels are typically lower than those observed in Western populations, was sparse. We examined the cross-sectional association between short- and long-term exposure to particulate matter and inflammatory markers, including high-sensitivity CRP (hs-CRP) and white blood cell (WBC) count, in a representative population of Japanese community dwellers (NIPPON DATA2010). We analysed data from 2360 participants (1002 men and 1358 women), aged 20 years or older, who resided in 300 randomly selected districts (222 public health centre areas) throughout Japan. We used background concentrations of suspended particulate matter (SPM, defined as particles with a 100% cut-off level at 10 μm aerodynamic diameter) and co-pollutants within the public health centre area. A logistic regression model was applied to estimate odds ratios (ORs) of elevated hs-CRP (> 0.3 mg/dl) or WBC (> 9000/μl). Since smoking is an important confounding factor, we firstly included this in the models, and additionally conducted the analyses after excluding current smokers. The one-month average concentration of SPM was positively associated with hs-CRP (OR per 10 μg/m3 increase in SPM = 1.42, 95% confidence interval = 1.00–2.04), and high exposure to SPM on the day of blood draw was associated with increased WBC count, after excluding current smokers (OR = 1.13, 1.01–1.28). Similar association patterns were observed for ozone. In conclusion, exposure to particulate matter was associated with inflammatory markers in the general Japanese population. Systemic inflammation may play a role in the link between particulate matter and cardiovascular disease.
Afficher plus [+] Moins [-]Trophic transfer and effects of DDT in male hornyhead turbot (Pleuronichthys verticalis) from Palos Verdes Superfund site, CA (USA) and comparisons to field monitoring Texte intégral
2016
Crago, Jordan | Xu, Elvis Genbo | Kupsco, Allison | Jia, Fang | Mehinto, Alvine C. | Lao, Wenjian | Maruya, Keith A. | Gan, Jay | Schlenk, Daniel
High concentrations of DDT and metabolites (ΣDDT) have been detected in sediment and the demersal flatfish hornyhead turbot (Pleuronichtys verticalis) collected from Palos Verdes (PV), California, USA, a site contaminated with over 100 metric tons of DDT throughout 1960s–70s. This study was conducted to assess the transfer of ΣDDT from PV-sediment into polychaetes (Neanthes arenaceodentata) and hornyhead turbot, and to investigate if the responses in turbots from two different laboratory exposures mimic those in turbots caught in PV (PV-turbot). Turbot fed PV-sediment-contaminated polychaete for 7 days had liver concentrations of ΣDDT similar to PV-turbot. After 28 days, ΣDDT also accumulated in livers of turbot gavaged with a ΣDDT mixture. In vitro cell bioassays indicated significant increases of 17β-estradiol equivalents (EEQ) in turbot bile extracts as compared to the control in the 7-day study. These responses corresponded to those measured in PV-fish. Glucocorticoid receptor (GR), anti-androgen receptor (anti-AR), estrogen receptor (ER) or aryl hydrocarbon receptor (AhR) activities were also observed in extracts of PV-sediment, and PV-sediment-exposed worm. Anti-AR, AhR and GR activities were significantly higher in PV-sediment than reference sediment (San Diego, SD). Higher transcripts of hepatic VTG, ERα and ERβ were found in PV-turbot than SD-turbot, but were unaltered in fish exposed to sediment-contaminated worms for the 7-day study. In contrast, liver extracts from the 28-day treatment of ΣDDT showed lower EEQ but similar hepatic VTG and ERβ transcripts relative to those of PV-turbot. These data indicated that trophic transfer of sediment-associated DDT in 7-day exposures corresponded to field measurements of DDT residues and in vitro ER bioactivities, but failed to mimic in vivo biological effects observed in field fish. In contrast, treatment with ΣDDT alone for 28 days mimicked in vivo biological effects of DDTs in PV fish, but did not correspond to liver concentrations or in vitro bioactivities.
Afficher plus [+] Moins [-]