Affiner votre recherche
Résultats 661-670 de 4,367
Comparative histories of polycyclic aromatic compound accumulation in lake sediments near petroleum operations in western Canada Texte intégral
2017
Thienpont, Joshua R. | Desjardins, Cyndy M. | Kimpe, Linda E. | Korosi, Jennifer B. | Kokelj, Steven V. | Palmer, Michael J. | Muir, Derek C.G. | Kirk, Jane L. | Smol, J. P. (John P.) | Blais, Jules M.
We examined the historical deposition of polycyclic aromatic compounds (PACs) recorded in radiometrically-dated lake sediment cores from a small, conventional oil and gas operation in the southern Northwest Territories (Cameron Hills), and placed these results in the context of previously published work from three other important regions of western Canada: (1) the Athabasca oil sands region in Alberta; (2) Cold Lake, Alberta; and (3) the Mackenzie Delta, NT. Sediment PAC records from the Cameron Hills showed no clear changes in either source or concentrations coincident with the timing of development in these regions. Changes were small in comparison to the clear increases in both parent and alkyl-substituted PACs in response to industrial development from the Athabasca region surface mining of oil sands, where parent PAC diagnostic ratios indicated a shift from pyrogenic sources (primarily wood and coal burning) in pre-development sediments to more petrogenically-sourced PACs in modern sediments. Cores near in-situ oil sand extraction operations showed only modest increases in PAC deposition. This work directly compares the history and trajectory of contamination in lake ecosystems in areas of western Canada impacted by the most common types of hydrocarbon extraction activities, and provides a context for assessing the environmental impacts of oil and gas development in the future.
Afficher plus [+] Moins [-]Fast and safe gas detection from underground coal fire by drone fly over Texte intégral
2017
Dunnington, Lucila | Nakagawa, Masami
Underground coal fires start naturally or as a result of human activities. Besides burning away the important non-renewable energy resource and causing financial losses, burning coal seams emit carbon dioxide, carbon monoxide, sulfur oxide and methane, and is a leading cause of smog, acid rain, global warming, and air toxins. In the U.S. alone, the combined cost of coal-fire remediation projects that have been completed, budgeted, or projected by the U.S. Department of the Interior's Office of Surface Mining Remediation and Enforcement (OSM), exceeds $1 billion. It is estimated that these fires generate as much as 3% of the world's annual carbon dioxide emissions and consume as much as 5% of its minable coal. Considering the magnitude of environmental impact and economic loss caused by burning underground coal seams, we have developed a new, safe, reliable surface measurement of coal fire gases to assess the nature of underground coal fires. We use a drone mounted with gas sensors. Drone collected gas concentration data provides a safe alternative for evaluating the rank of a burning coal seam. In this study, a new method of determining coal rank by gas ratios is developed. Coal rank is valuable for defining parameters of a coal seam such as burn temperature, burn rate, and volume of burning seam.
Afficher plus [+] Moins [-]Study on emission of hazardous trace elements in a 350 MW coal-fired power plant. Part 1. Mercury Texte intégral
2017
Zhao, Shilin | Duan, Yufeng | Chen, Lei | Li, Yaning | Yao, Ting | Lichuanjushi, | Liu, Meng | Lu, Jianhong
Hazardous trace elements (HTEs), especially mercury, emitted from coal-fired power plants had caused widespread concern worldwide. Field test on mercury emissions at three different loads (100%, 85%, 68% output) using different types of coal was conducted in a 350 MW pulverized coal combustion power plant equipped with selective catalytic reduction (SCR), electrostatic precipitator and fabric filter (ESP + FF), and wet flue gas desulfurization (WFGD). The Ontario Hydro Method was used for simultaneous flue gas mercury sampling for mercury at the inlet and outlet of each of the air pollutant control device (APCD). Results showed that mercury mass balance rates of the system or each APCD were in the range of 70%–130%. Mercury was mainly distributed in the flue gas, followed by ESP + FF ash, WFGD wastewater, and slag. Oxidized mercury (Hg2+) was the main form of mercury form in the flue gas emitted to the atmosphere, which accounted for 57.64%–61.87% of total mercury. SCR was favorable for elemental mercury (Hg0) removal, with oxidation efficiency of 50.13%–67.68%. ESP + FF had high particle-bound mercury (Hgp) capture efficiency, at 99.95%–99.97%. Overall removal efficiency of mercury by the existing APCDs was 58.78%–73.32%. Addition of halogens or oxidants for Hg0 conversion, and inhibitors for Hg0 re-emission, plus the installation of a wet electrostatic precipitator (WESP) was a good way to improve the overall removal efficiency of mercury in the power plants. Mercury emission factor determined in this study was from 0.92 to 1.17 g/1012J. Mercury concentration in the emitted flue gas was much less than the regulatory limit of 30 μg/m3. Contamination of mercury in desulfurization wastewater should be given enough focus.
Afficher plus [+] Moins [-]Could hypoxia acclimation cause morphological changes and protect against Mn-induced oxidative injuries in silver catfish (Rhamdia quelen) even after reoxygenation? Texte intégral
2017
Dolci, G.S. | Rosa, H.Z. | Vey, L.T. | Pase, C.S. | Barcelos, R.C.S. | Dias, V.T. | Loebens, L. | Dalla Vecchia, P. | Bizzi, C.A. | Baldisserotto, B. | Burger, M.E.
Exposure to hypoxia has shown beneficial adjustments in different species, including silver catfish (Rhamdia quelen), especially in situations of aquatic contamination with pollutants such as manganese (Mn). Considering that hypoxia is seasonal in the natural aquatic environment, we decided to assess whether these adaptive mechanisms could be maintained when reoxygenation is established. Silver catfish acclimated to moderate hypoxia (∼3 mg L⁻¹, 41% O2 saturation) for 10 days and subsequently exposed to Mn (∼8.1 mg L⁻¹) for additional 10 days displayed lower (47%) Mn accumulation in the gills, and it was maintained (62.6%) after reoxygenation, in comparison to normoxia. Oxidative status in the gills allowed us to observe increased reactive species (RS) generation and protein carbonyl (PC) level together with decreased mitochondrial viability induced by Mn under normoxia. Inversely, while hypoxia per se was beneficial on RS generation and PC level, this acclimation was able to minimize Mn toxicity, as observed by the minor increase of RS generation and the minor reduction of mitochondrial viability, together with decreased PC level. Interestingly, after reoxygenation, part of the protective influences observed during hypoxia against Mn toxicity were maintained, as observed through a lower level of PC and higher mitochondrial viability in relation to the group exposed to Mn under normoxia. Only groups exposed to Mn under hypoxia showed increased activity of both catalase (CAT) and Na⁺/K⁺-ATPase in the gills, but, while CAT activity remained increased after reoxygenation, Na⁺/K⁺-ATPase activity was decreased by Mn, regardless of the oxygen level. Based on these outcomes, it is possible to propose that environment events of moderate hypoxia are able to generate rearrangements in the gills of silver catfish exposed to Mn, whose influence persists after water reoxygenation. These responses may be related to the adaptive development, reducing Mn toxicity to silver catfish.Moderate hypoxia generates rearrangements in the gills of Silver catfish, exerting beneficial and persistent protection against Mn toxicity.
Afficher plus [+] Moins [-]Chemical characteristic of PM2.5 emission and inhalational carcinogenic risk of domestic Chinese cooking Texte intégral
2017
Zhang, Nan | Han, Bin | He, Fei | Xu, Jia | Zhao, Ruojie | Zhang, Yujuan | Bai, Zhipeng
To illustrate chemical characteristic of PM2.5 emission and assess inhalational carcinogenic risk of domestic Chinese cooking, 5 sets of duplicate cooking samples were collected, using the most used 5 types of oil. The mass abundance of 14 elements, 5 water-soluble ions, organic carbon (OC), elemental carbon (EC) and 11 polycyclic aromatic hydrocarbons (PAHs) were calculated; the signature and diagnostic ratio of cooking in the domestic kitchen were analyzed; and carcinogenic risks of heavy metals and PAHs via inhalation were assessed in two scenarios. The analysis showed that OC was the primary composition in the chemical profile; Na was the most abundant element that might be due to the usage of salt; Cr and Pb, NO3− and SO42-, Phe, FL and Pyr were the main heavy metals/water-soluble ions/PAHs, respectively. Phe and FL could be used to separate cooking and stationary sources, while diagnostic ratios of BaA/(BaA + CHR), BaA/CHR, BaP/BghiP and BaP/BeP should be applied with caution, as they were influenced by various cooking conditions. Carcinogenic risks of heavy metals and PAHs were evaluated in two scenarios, simulating the condition of cooking with no ventilation and with the range hood on, respectively. The integrated risk of heavy metals and PAHs was 2.7 × 10−3 and 5.8 × 10−6, respectively, during cooking with no ventilation. While with the usage of range hood, only Cr(VI), As and Ni might induce potential carcinogenic risk. The difference in the chemical abundance in cooking sources found between this and other studies underlined the necessity of constructing locally representative source profiles under real conditions. The comparison of carcinogenic risk suggested that the potentially adverse health effects induced by inorganic compositions from cooking sources should not be ignored. Meanwhile, intervention methods, such as the operation of range hood, should be applied during cooking for health protection.
Afficher plus [+] Moins [-]Binary mixtures of neonicotinoids show different transcriptional changes than single neonicotinoids in honeybees (Apis mellifera) Texte intégral
2017
Christen, Verena | Bachofer, Sara | Fent, Karl
Among the many factors responsible for the decline of bee populations are plant protection products such as neonicotinoids. In general, bees are exposed to not only one but mixtures of such chemicals. At environmental realistic concentrations neonicotinoids may display negative effects on the immune system, foraging activity, learning and memory formation of bees. Neonicotinoids induce alterations of gene transcripts such as nicotinic acetylcholine receptor (nAChR) subunits, vitellogenin, genes of the immune system and genes linked to memory formation. While previous studies focused on individual compounds, the effect of neonicotinoid mixtures in bees is poorly known. Here we investigated the effects of neonicotinoids acetamiprid, clothianidin, imidacloprid and thiamethoxam as single compounds, and binary mixtures thereof in honeybees. We determined transcriptional changes of nAChR subunits and vitellogenin in the brain of experimentally exposed honeybees after exposure up to 72 h. Exposure concentrations were selected on the basis of lowest effect concentrations of the single compounds. Transcriptional induction of nAChRs and vitellogenin was strongest for thiamethoxam, and weakest for acetamiprid. To a large extent, binary mixtures did not show additive transcriptional inductions but they were less than additive. Our data suggest that the joint transcriptional activity of neonicotinoids cannot be explained by concentration addition. The in vivo effects are not only governed by agonistic interaction with nAChRs alone, but are more complex as a result of interactions with other pathways as well. Further studies are needed to investigate the physiological joint effects of mixtures of neonicotinoids and other plant protection products on bees to better understand their joint effects.
Afficher plus [+] Moins [-]Characteristics and source appointment of atmospheric particulate mercury over East China Sea: Implication on the deposition of atmospheric particulate mercury in marine environment Texte intégral
2017
Duan, Lian | Cheng, Na | Xiu, Guangli | Wang, Fujiang | Chen, Ying
Total Suspended Particulate (TSP) samples were collected at Huaniao Island in northern East China Sea (ECS) from March 2012 to January 2013. Chemical analysis were conducted to measure the concentration of total particulate mercury (TPM) and speciated particulate mercury including HCl-soluble particulate mercury (HPM), elemental particulate mercury (EPM) and residual particulate mercury (RPM). The bromine (Br) and iodine (I) on particles were also detected. The mean concentration of TPM during the study period was 0.23 ± 0.15 ng m⁻³, while the obviously seasonal variation was found that the concentrations of TPM in spring, summer, fall and winter were 0.34 ± 0.20 ng m⁻³, 0.15 ± 0.03 ng m⁻³, 0.15 ± 0.05 ng m⁻³ and 0.27 ± 0.26 ng m⁻³, respectively. The statistically strong correlation of bromine and iodine to HPM was only found in spring with r = 0.81 and 0.77 (p < 0.01), respectively. While the strongest correlations between EPM and bromine and iodine were found in winter with r = 0.92 (Br) and 0.96 (I) (p < 0.01), respectively. The clustered 72-h backward trajectories of different seasons and the whole sampling period were categorized into 4 groups. In spring, the clusters passed a long distance across the East China Sea and brought about low concentration of mercury due to the deposition of mercury over the sea. The cluster of air mass across the sea had low concentration of HPM in winter, which suggested that the oxidation of mercury in winter might be related to other oxidants. During the whole sampling period, the air mass from the north of China contributed to the higher concentration of TPM in Huaniao Island.
Afficher plus [+] Moins [-]Total tin and organotin speciation in historic layers of antifouling paint on leisure boat hulls Texte intégral
2017
Lagerström, Maria | Strand, Jakob | Eklund, Britta | Ytreberg, Erik
Despite their ban on small vessels in 1989 in the EU, organotin compounds (OTCs) are still being released into the environment due to their presence in historic paint layers on leisure boats. 23 paint samples scraped from recreational boats from three countries around the Baltic Sea were analyzed for total tin (Sn) and OTCs. Two antifouling paint products were also subjected to the same analyses. A new method for the detection of Sn in paint flake samples was developed and found to yield more accurate results compared to four different acid digestion methods. A new method was also developed for the extraction of OTCs from ground paint flakes. This endeavor revealed that existing methods for organotin analysis of sediment may not have full recoveries of OTCs if paint flakes are present in the sample. The hull paint samples had Sn concentrations ranging from 25 to 18,000 mg/kg paint and results showed that tributyltin (TBT) was detected in all samples with concentrations as high as 4.7 g (as Sn)/kg paint. TBT was however not always the major OTC. Triphenyltin (TPhT) was abundant in many samples, especially in those originating from Finland. Several other compounds such as monobutyltin (MBT), dibutyltin (DBT), tetrabutyltin (TeBT), monophenyltin (MPhT) and diphenyltin (DPhT) were also detected. These could be the result of degradation occurring on the hull or of impurities in the paint products as they were also identified in the two analyzed paint products. A linear correlation (r2 = 0.934) was found between the total tin content and the sum of all detected OTCs. The detection of tin can therefore be used to indicate the presence of OTCs on leisure boats.
Afficher plus [+] Moins [-]Phenanthrene-triggered Chlorosis is caused by elevated Chlorophyll degradation and leaf moisture Texte intégral
2017
Shen, Yu | Li, Jinfeng | Gu, Ruochen | Yue, Le | Zhan, Xinhua | Xing, Baoshan
Leaf is an important organ in responding to environmental stresses. To date, chlorophyll metabolism under polycyclic aromatic hydrocarbon (PAH) stress is still unclear. Here we reveal, for the first time, the chlorophyll metabolism of wheat seedling leaves in response to phenanthrene (a model PAH) exposure. In this study, the hydroponic experiment was employed, and the wheat seedlings were exposed to phenanthrene to observe the response at day 1, 3, 5, 7 and 9. Over the exposure time, wheat leaf color turns light. With the accumulation of phenanthrene, the concentrations of glutamate, 5-aminolevulinic acid, uroporphyrinogen III, protoporphyrin IX, Mg-protoporphyrin IX and protochlorophyllide increase while the concentrations of porphobilinogen and Chlorophyll b decrease. Also chlorophyll a content rises initially and then declines. Uroporphyrinogen III synthase and chlorophyllase are activated and porphobilinogen deaminase activity declines in the treatments. Both chlorophyll synthesis and degradation are enhanced, but the degradation rate is faster. Phenanthrene accumulation has significant and positive effects on increase of glutamate, 5-aminolevulinic acid, uroporphyrinogen III, protoporphyrin IX, Mg-protoporphyrin IX and protochlorophyllide concentrations. There is a negative correlation between phenanthrene accumulation and total chlorophyll. Additionally, the leaf moisture increases. Therefore, it is concluded that wheat leaf chlorosis results from a combination of accelerated chlorophyll degradation and elevated leaf moisture under phenanthrene exposure. Our results are helpful not only for better understanding the toxicity of PAHs to plants and crop PAH-adaptive mechanism in the environment, but also for potentially employing the changes of the chlorophyll-synthesizing precursors and enzyme activities in plant leaves as indicators of plant response to PAH pollution.
Afficher plus [+] Moins [-]Environmental hazard assessment of a marine mine tailings deposit site and potential implications for deep-sea mining Texte intégral
2017
Mestre, Nélia C. | Rocha, Thiago L. | Canals, M. (Miquel) | Cardoso, Cátia | Danovaro, Roberto | Dell’Anno, Antonio | Gambi, Cristina | Regoli, Francesco | Sanchez-Vidal, Anna | Bebianno, Maria João
Environmental hazard assessment of a marine mine tailings deposit site and potential implications for deep-sea mining Texte intégral
2017
Mestre, Nélia C. | Rocha, Thiago L. | Canals, M. (Miquel) | Cardoso, Cátia | Danovaro, Roberto | Dell’Anno, Antonio | Gambi, Cristina | Regoli, Francesco | Sanchez-Vidal, Anna | Bebianno, Maria João
Portmán Bay is a heavily contaminated area resulting from decades of metal mine tailings disposal, and is considered a suitable shallow-water analogue to investigate the potential ecotoxicological impact of deep-sea mining. Resuspension plumes were artificially created by removing the top layer of the mine tailings deposit by bottom trawling. Mussels were deployed at three sites: i) off the mine tailings deposit area; ii) on the mine tailings deposit beyond the influence from the resuspension plumes; iii) under the influence of the artificially generated resuspension plumes. Surface sediment samples were collected at the same sites for metal analysis and ecotoxicity assessment. Metal concentrations and a battery of biomarkers (oxidative stress, metal exposure, biotransformation and oxidative damage) were measured in different mussel tissues. The environmental hazard posed by the resuspension plumes was investigated by a quantitative weight of evidence (WOE) model that integrated all the data. The resuspension of sediments loaded with metal mine tails demonstrated that chemical contaminants were released by trawling subsequently inducing ecotoxicological impact in mussels’ health. Considering as sediment quality guidelines (SQGs) those indicated in Spanish action level B for the disposal of dredged material at sea, the WOE model indicates that the hazard is slight off the mine tailings deposit, moderate on the mine tailings deposit without the influence from the resuspension plumes, and major under the influence of the resuspension plumes. Portmán Bay mine tailings deposit is a by-product of sulphide mining, and despite differences in environmental setting, it can reflect the potential ecotoxic effects to marine fauna from the impact of resuspension of plumes created by deep-sea mining of polymetallic sulphides. A similar approach as in this study could be applied in other areas affected by sediment resuspension and for testing future deep-sea mining sites in order to assess the associated environmental hazards.
Afficher plus [+] Moins [-]Environmental hazard assessment of a marine mine tailings deposit site and potential implications for deep-sea mining Texte intégral
2017
Mestre, Nélia | Rocha, Thiago L. | Canals, Miquel | Cardoso, Cátia | Danovaro, Roberto | Dell’Anno, Antonio | Gambi, Cristina | Regoli, Francesco | Sanchez-Vidal, Anna | Bebianno, Maria João
Portmán Bay is a heavily contaminated area resulting from decades of metal mine tailings disposal, and is considered a suitable shallow-water analogue to investigate the potential ecotoxicological impact of deep-sea mining. Resuspension plumes were artificially created by removing the top layer of the mine tailings deposit by bottom trawling. Mussels were deployed at three sites: i) off the mine tailings deposit area; ii) on the mine tailings deposit beyond the influence from the resuspension plumes; iii) under the influence of the artificially generated resuspension plumes. Surface sediment samples were collected at the same sites for metal analysis and ecotoxicity assessment. Metal concentrations and a battery of biomarkers (oxidative stress, metal exposure, biotransformation and oxidative damage) were measured in different mussel tissues. The environmental hazard posed by the resuspension plumes was investigated by a quantitative weight of evidence (WOE) model that integrated all the data. The resuspension of sediments loaded with metal mine tails demonstrated that chemical contaminants were released by trawling subsequently inducing ecotoxicological impact in mussels' health. Considering as sediment quality guidelines (SQGs) those indicated in Spanish action level B for the disposal of dredged material at sea, the WOE model indicates that the hazard is slight off the mine tailings deposit, moderate on the mine tailings deposit without the influence from the resuspension plumes, and major under the influence of the resuspension plumes. Portmán Bay mine tailings deposit is a by-product of sulphide mining, and despite differences in environmental setting, it can reflect the potential ecotoxic effects to marine fauna from the impact of resuspension of plumes created by deep-sea mining of polymetallic sulphides. A similar approach as in this study could be applied in other areas affected by sediment resuspension and for testing future deep-sea mining sites in order to assess the associated environmental hazards. | info:eu-repo/semantics/publishedVersion
Afficher plus [+] Moins [-]