Affiner votre recherche
Résultats 681-690 de 753
Leachability and leaching patterns from aluminium-based water treatment residual used as media in laboratory-scale engineered wetlands Texte intégral
2010
Babatunde, A. O | Zhao, Y. Q
Concept and purpose Virtually all water treatment facilities worldwide generate an enormous amount of water treatment residual (WTR) solids for which environmentally friendly end-use options are continually being sought as opposed to their landfilling. Aluminium-based WTR (Al-WTR) can offer huge benefits particularly for phosphorus (P) removal and biofilm attachment when used as media in engineered wetlands. However, potential environmental risks that may arise from the leaching out of its constituents must be properly evaluated before such reuse can be assured. This paper presents results of an assessment carried out to monitor and examine the leachability and leaching patterns of the constituents of an Al-WTR used as media in laboratory-scale engineered wetland systems. Main features, materials and methods Al-WTR was used as media in four different configurations of laboratory-scale engineered wetland systems treating agricultural wastewater. Selected metal levels were determined in the Al-WTR prior to being used while levels of total and dissolved concentration for the metals were monitored in the influent and effluent samples. The increase or decrease of these metals in the used Al-WTR and their potential for leaching were determined. Leached metal levels in the effluents were compared with relevant environmental quality standards to ascertain if they pose considerable risks. Results Aluminium, arsenic, iron, lead and manganese were leached into the treated effluent, but aluminium exhibited the least leaching potential relative to its initial content in the fresh Al-WTR. Levels of P increased from 0.13 mg-P/g (fresh Al-WTR) to 33.9-40.6 mg-P/g (used Al-WTR). Dissolved levels of lead and arsenic (except on one instance) were below the prescribed limits for discharge. However, total and dissolved levels of aluminium were in most cases above the prescribed limits for discharge, especially at the beginning of the experiments. Conclusions, recommendations and perspectives Overall, the study indicates that leaching is observed when Al-WTR is beneficially reused for enhanced P removal in engineered wetlands. In particular, levels of aluminium in the treated effluent beyond the prescribed limits of 0.2 mg/l were observed. However, since the results obtained indicate that aluminium leached is mostly associated with solids, a post-treatment unit which can further reduce the level of aluminium in the treated effluent by filtering out the solids could serve to mitigate this. In addition, plants used in such wetland systems can uptake metals and this can also be a potential solution to ameliorating such metal releases. Periodic monitoring is thus advised. Notwithstanding, the use of Al-WTR as a media in engineered wetlands can serve to greatly enhance the removal of P from wastewaters and also serve as support material for biofilm attachment.
Afficher plus [+] Moins [-]Assessment of chemical effects on aromatase activity using the H295R cell line Texte intégral
2010
Higley, Eric B | Newsted, John L | Zhang, Xiaowei | Giesy, John P | Hecker, Markus
Background, aim, and scope In response to concerns about chemical substances that can alter the function of endocrine systems and may result in adverse effects on human and ecosystem health, a number of in vitro tests have been developed to identify and assess the endocrine disrupting potential of chemicals and environmental samples. One endpoint that is frequently used in in vitro models for the assessment of chemical effects on the endocrine system is the alteration of aromatase activity (AA). Aromatase is the enzyme responsible for converting androgens to estrogens. Some commonly used aromatase assays, including the human microsomal assay that is a mandatory test in US-EPA's endocrine disruptor screening program (EDSP), detect only direct effects of chemicals on aromatase activity and not indirect effects, including changes in gene expression or transcription factors. This can be a problem for chemical screening initiatives such as the EDSP because chemicals can affect aromatase both indirectly and directly. Here we compare direct, indirect, and combined measurements of AA using the H295R cell line after exposure to seven model chemicals. Furthermore, we compare the predictability of the different types of AA measurements for 17β-estradiol (E2) and testosterone (T) production in vitro. Materials and methods H295R cells were exposed to forskolin, atrazine, letrozole, prochloraz, ketoconazole, aminoglutethimide, and prometon for 48 h. Direct, indirect, and combined effects on aromatase activity were measured using a tritiated water-release assay. Direct effects on aromatase activity were assessed by exposing cells only during the conduct of the tritium-release assay. Indirect effects were measured after exposing cells for 48 h to test chemicals, and then measuring AA without further chemical addition. Combined AA was measured by exposing cells prior and during the conduction of the tritium-release assay. Estradiol and testosterone were measured by ELISA. Results and discussion Exposure to the aromatase inhibitors letrozole, prochloraz, ketoconazole, and aminoglutethimide resulted in greater indirect aromatase activity after a 48-h exposure due to presumed compensatory mechanisms involved in aromatase activity regulation. Forskolin and atrazine caused similar changes in hormone production and enzyme profiles, and both chemicals resulted in a dose-dependent increase in E2, T, and indirect AA. Neither of these two chemicals directly affected AA. For most of the chemicals, direct and combined AA and E2 were good predictors of the mechanism of action of the chemical, with regard to AA. Indirect aromatase activity was a less precise predictor of effects at the hormone level because of presumed feedback loops that made it difficult to predict the chemicals' true effects, mostly seen with the aromatase inhibitors. Further, it was found that direct and indirect AA measurements were not reliable predictors of effects on E2 for general inducers and inhibitors, respectively. Conclusions Differential modulation of AA and hormone production was observed in H295R cells after exposure to seven model chemicals, illustrating the importance of measuring multiple endpoints when describing mechanisms of action in vitro. Recommendations and perspectives For future work with the H295R, it is recommended that a combination of direct and indirect aromatase measurements is used because it was best in predicting the effects of a chemical on E2 production and its mechanism of action. Further, it was shown that direct AA measurements, which are a common way to measure AA, must be used with caution in vitro.
Afficher plus [+] Moins [-]A microbiological study of the self-cleaning potential of oily Arabian Gulf coasts Texte intégral
2010
Mahmoud, Huda | Al-Hasan, Redha | Khanafer, Majida | Raḍwān, Samīr Muḥammad
Background, aim, and scope Due to the active production and transport of crude oil in the Arabian Gulf region, the Arabian Gulf coasts are routinely polluted with oil. Therefore, such coasts have been subject of studies aiming at assessing the roles of indigenous microbial consortia in cleaning these environments. In the present study, epilithic microbial communities along Kuwait coasts were studied for their oil degradation potential. Materials and methods Gravel particles coated with deep green biofilms were collected from four coastal sites in autumn, winter, and spring. Phototrophs in these consortia were determined in terms of their chlorophyll a contents and identified by their morphological characteristics. Total bacteria were counted microscopically and cultivable bacteria by the dilution plating method on nutrient agar as well as on inorganic medium containing oil as a sole source of carbon and energy. The bacterial community structures were also characterized and compared by denaturing gradient gel electrophoresis (DGGE). Results Epilithic biomass samples from the four sites in the three seasons were rich in diatoms and picocyanobacteria as well as total bacteria. Direct counting gave bacterial numbers per square centimeter gravel surface of 2 to 6 × 10⁷ cells depending on the sampling site and season. Cultivable bacterial numbers on nutrient agar and crude oil as a sole source of carbon were 3 × 10³ to 8 × 10⁴ and 1 × 10³ to 7 × 10³ cells/cm² gravel surface, respectively. The DGGE profiles of epilithon biomass samples revealed major 16S rDNA bands that matched bands of pure oil-utilizing bacterial isolates. Discussion The microbial communities showed a degree of consistency in all sites and seasons. Conclusions The microbial consortia coating gravel particles are potentially suitable tools for self-cleaning of oily Gulf coasts. They are rich in oil-utilizing bacteria whose activities are probably enhanced by oxygen produced by the phototrophic partners in the consortia. Recommendations and perspectives The combination of conventional microbiological analysis with molecular approaches gives an enhanced idea about natural microbial communities especially those with environmental application potential.
Afficher plus [+] Moins [-]Modification of exopolysaccharide composition and production by three cyanobacterial isolates under salt stress Texte intégral
2010
Ozturk, Sahlan | Aslim, Belma
Background, aim, and scope Polysaccharides are renewable resources representing an important class of polymeric materials of biotechnological interest, offering a wide variety of potentially useful products to mankind. Exopolysaccharides (EPSs) of microbial origin with a novel functionality, reproducible physico-chemical properties, stable cost and supply, became a better alternative to polysaccharides of algal origin. EPSs are believed to protect bacterial cells from desiccation, heavy metals or other environmental stresses, including hostimmune responses, and to produce biofilms, thus enhancing the cells chances of colonising special ecological niches. One of the most important stress factor is salt stress for microorganisms. The present investigation is aimed to determine correlation between salt resistance and EPS production by three cyanobacterial isolates (Synechocystis sp. BASO444, Synechocystis sp. BASO507 and Synechocystis sp. BASO511). It is also aimed to investigate the effect of salt concentrations on EPS production by cyanobacteria and effect of salt on monosaccharide composition of EPS. Materials and methods Cyanobacterial isolates were identified by 16 S rRNA analysis. Its salt (NaCl) tolerance and association with exopolysaccharides (EPSs) production in three cyanobacterial isolates were investigated. Also, EPS was analysed by HPLC for monomer characterization. Results Increased EPS production was associated with NaCl tolerance. The most tolerant isolate, Synechocystis sp. BASO444, secreted the most EPS (500 mg/L). EPS production by Synechocystis sp. BASO444, Synechocystis sp. BASO507 and Synechocystis sp. BASO511 was investigated following exposure to 0.2 and 0.4 M NaCl. Also, flasks containing medium without NaCl were inoculated in the same manner to serve as controls. The monosaccharide compositions of EPS produced by the three isolates following exposure to 0.2 M NaCl were analysed by HPLC. Control EPS of BASO444 was composed of glucose (97%) and galacturonic acid (3%). The composition of BASO511 (control) was glucose (95%), xylose (4.80%), arabinose (0.13%), glucuronic acid (0.03%) and galacturonic acid (0.04%). However, the composition of BASO507 (control) was glucose (0.98%), xylose (98.00%), arabinose (1.00%), glucuronic acid (0.01%) and galacturonic acid (0.01%). In the presence of 0.2 M NaCl, EPS compositions and ratios of three cyanobacterial isolates changed. Discussion Although hyperproduction of EPS in response to starvation, antiviral activity, thickening agent and cosmetic industry for product formulations has been reported for cyanobacteria, the effect of NaCl on EPS production in cyanobacteria is not a popular area of study. There are no clear reports correlating EPS production and NaCl tolerance. The gap in the data about the effect of NaCl on cyanobacterial EPS production was filled by this investigation, and the results of our study have important implications in both the industrial and environmental arenas. Conclusions Our results indicate that 1) exposure to elevated concentrations of NaCl affects the composition of EPS produced by Synechocystis sp. BASO444, Synechocystis sp. BASO507 and Synechocystis sp. BASO511, and 2) there is a correlation between NaCl tolerance and EPS production in some cyanobacteria. Recommendations and perspectives Differences in the monosaccharide composition and ratios of EPS may promote NaCl tolerance in these microorganisms. As well, these alternative composition polysaccharides may be important for industrial applications.
Afficher plus [+] Moins [-]Gas phase reactions of unsaturated esters with Cl atoms Texte intégral
2010
Martín Porrero, María Pilar | Gallego-Iniesta García, Maria Paz | Espinosa Ruiz, Jose Luis | Tapia Valle, Araceli | Cabañas Galán, Beatriz | Salgado Muñoz, Maria Sagrario
Background, aim, and scope Acrylate and methacrylate esters are α,β-unsaturated esters that contain vinyl groups directly attached to the carbonyl carbon (CH₂=CHCOO- and CH₂=CCH₃COO-, respectively) and are widely used in the polymer plastic and resin production. Rate coefficients for Cl reactions for most of the unsaturated esters have not been previously determined, and a good understanding is needed of all the atmospheric oxidation processes of these compounds in order to determine lifetimes in the atmosphere and to evaluate the impact of these reactions on the formation of photo-oxidants and therefore on health and environment. Materials and methods The relative rate technique has been used to obtain rate coefficients for the reactions between the Cl atom and a series of unsaturated esters. The experiments have been carried out in a static Teflon reactor at room temperature and atmospheric pressure (N₂ as bath gas) using gas chromatography with flame ionization detection as detection system. Results The following rate coefficients are obtained (in cubic meter per molecule per second): methyl acrylate + Cl = 1.71 ± 0.13 × 10⁻¹⁰; methyl methacrylate + Cl = 2.30 ± 0.18 × 10⁻¹⁰; ethyl acrylate + Cl = 1.82 ± 0.13 × 10⁻¹⁰; ethyl methacrylate + Cl = 2.71 ± 0.21 × 10⁻¹⁰; butyl acrylate + Cl = 2.94 ± 0.23 × 10⁻¹⁰; butyl methacrylate + Cl = 3.83 ± 0.30 × 10⁻¹⁰; methyl 3-methyl acrylate + Cl = 2.21 ± 0.17 × 10⁻¹⁰; and methyl 3,3-dimethyl acrylate + Cl = 3.58 ± 0.28 × 10⁻¹⁰. Discussion Rate coefficients calculated for Cl reactions are around one order of magnitude higher than OH ones. The effect in the reactivity of increased substitution at the carbon-carbon double bond is analyzed and also the effect of the identity of the alkyl group R in the -C(O)OR. Atmospheric lifetimes of the compounds against the attack by the major oxidants are estimated and the atmospheric implications are discussed. Conclusions The dominant atmospheric loss process for acrylate esters is clearly their daytime reaction with the hydroxyl radical. However, in coastal areas and in the marine boundary layer and in some industrial zones, Cl-atom-initiated degradation of the unsaturated esters considered here can be a significant if not dominant homogeneous loss process. Recommendations and perspectives Product analysis should be necessary in order to evaluate the real environmental impact of these reactions. OH and ozone reactions of most of the considered compounds have already been studied and products determined, but kinetic and products information for NO₃ radical reactions is especially scarce.
Afficher plus [+] Moins [-]Study on adsorption and remediation of heavy metals by poplar and larch in contaminated soil Texte intégral
2010
Wang, Xin | Jia, Youngfeng
Introduction Field experiments at the Shenyang Experimental Station of Ecology were conducted to study the adsorption, accumulation, and remediation of heavy metals by poplar and larch grown in artificially contaminated soil. Materials and methods The soil was spiked with a combination of Cd, Cu, and Zn at concentrations of 1.5, 100, and 200 mg·kg⁻¹, respectively. Results The results showed that the biomass of poplar (Populus canadensis Moench) was lower by 26.0% in the soil spiked with a mixture of Cd, Cu, and Zn, compared with the control. Concentrations of Cd in poplar leaf and Cu in poplar roots in the treated soil were 4.11 and 14.55 mg kg⁻¹, respectively, which are much greater than in corresponding controls. The migration of heavy metals in woody plant body was in the order Cd > Zn > Cu. Poplar had higher metal concentrations in aboveground tissues and a higher biomass compared with larch of the same age and therefore is potentially more suitable for remediation. In the heavy metal-polluted soil of this study, phytoremediation by poplar may take 56 and 245 years for Cd and Cu, respectively, for meeting the soil standards of heavy metals, and the corresponding phytoremediation times by larch would take 211 and 438 years. Conclusion The research findings could be used as a basis to develop ecological engineering technologies for environmental control and remediation of pollution caused by heavy metals in soils.
Afficher plus [+] Moins [-]Comprehensive evaluation of municipal garbage disposal in Changchun City by the strategic environmental assessment Texte intégral
2010
Xu, Jianling L. | Tang, Zhanhui H. | Shang, Jincheng C. | Zhao, Yuanhui H.
Purpose The environmental issues caused by the municipal solid waste disposal are becoming a worldwide concern. Methods We studied the situations both domestically and abroad by the strategic environmental assessment (SEA) approach and also conducted comprehensive evaluations of garbage disposal in Changchun City. Results On the basis of this study, we found that SEA is of great importance in the municipal solid waste disposal. Moreover, with the rapid socioeconomic development of Changchun City, municipal solid waste production increases on an annual basis, and thus, good waste management planning is of great significance. Conclusions Considering the situation of the economic development of Changchun City, garbage disposal was handled mainly in the major sanitary landfills with appropriate use of incineration technology. This plan is environmentally friendly at a relatively high degree and has met the requirements of minimum investment. It also takes into account the requirements of the development of incineration technology. Regarding environmental pollution in terms of groundwater pollution and atmospheric pollution, this plan is a feasible one by meeting various requirements with low environmental impact among the three plans discussed in this study.
Afficher plus [+] Moins [-]Non-target screening analysis of river water as compound-related base for monitoring measures Texte intégral
2010
Schwarzbauer, Jan | Ricking, Mathias
Background, aim, and scope Building up a comprehensive accurate monitoring program requires the knowledge on the contamination in principal, complemented by detailed information on individual contaminants. The selection of pollutants to be considered in monitoring actions is based dominantly on the information available about their environmental relevance (e.g., persistence, bioaccumulation potential, toxicological and ecotoxicological properties) and their occurrence within the affected environmental system. Therefore, this study focused on the identification of organic contaminants in selected German and European rivers to demonstrate the usefulness of a screening approach as complementary base for the compound selection process within monitoring activities. Materials and methods Gas chromatography-mass spectrometry-based screening analyses were performed on five and six samples from German and European rivers, respectively. Identification of individual contaminants was based on the investigation of mass spectral and gas chromatographic properties compared with databases and reference materials. Results This study summarized the results of non-target screening analyses applied to river water samples and focused dominantly on, so far, unnoticed organic contaminants. Numerous compounds have been identified belonging to the groups of pharmaceuticals, technical additives, pesticides, personal care products, and oxygen-, nitrogen-, and sulfur-containing compounds of obviously anthropogenic origin. They are discussed in terms of their structural properties, their possible application or usage, and the environmental information available so far. Discussion Generally, two different groups of compounds have been differentiated that might contribute to potential monitoring programs. Firstly, more specific contaminants characterizing the individual riverine systems have been depicted (e.g., 4-chloro-2-(trifluoromethyl)aniline, di-iso-propylurea). The consideration of these substances in monitoring analyses to be applied to the corresponding catchment areas is recommended in order to monitor the real state of pollution. Secondly, contaminants have been introduced that appeared with higher multiplicity throughout the different river systems (e.g., TMDD, TXIB). Since these compounds tend to obviously have an elevated environmental stability accompanied by a widespread distribution, it is recommended to consider them in international high-scale monitoring programs. Conclusions For monitoring purposes, a fundamental knowledge on the diversity of pollutants is an important precondition, which can be supported by screening analyses. Obviously, numerous organic contaminants have been neglected so far in environmental studies on river water, comprising also investigation on potential harmful effects and, therefore, their implementation in monitoring activities has been hindered. Recommendations and perspectives Therefore, based on the results of this study, screening analyses should be established as principle tools to improve and complement the substance spectra for monitoring purposes. Secondly, scientific efforts should be strengthened to expand our knowledge on actually appearing organic contaminants in riverine systems.
Afficher plus [+] Moins [-]Behaviour and dynamics of di-ammonium phosphate in bauxite processing residue sand in Western Australia—I. NH₃ volatilisation and residual nitrogen availability Texte intégral
2010
Chen, C. R | Phillips, I. R | Wei, L. L | Xu, Z. H
Background, aim and scope Australia is the largest producer of bauxite in the world, with an annual output of approximately 62 million metric dry tons in 2007. For every tonne of alumina, about 2 tonnes of highly alkaline and highly saline bauxite-processing residue are produced. In Western Australia, Alcoa World Alumina, Australia (Alcoa) produces approximately 15 MT of residue annually from its refineries (Kwinana, Pinjarra and Wagerup). The bauxite-processing residue sand (BRS) fraction represents the primary material for rehabilitating Alcoa's residue disposal areas (RDAs). However, the inherently hostile characteristics (high alkalinity, high salinity and poor nutrient availability) of BRS pose severe limitations for establishing sustainable plant cover systems. Alcoa currently applies 2.7 t ha⁻¹ of di-ammonium phosphate ((NH₄)₂HPO₄; DAP)-based fertiliser as a part of rehabilitation of the outer residue sand embankments of its RDAs. Limited information on the behaviour of the dominant components of this inorganic fertiliser in highly alkaline BRS is currently available, despite the known effects of pH on ammonium (NH₄) and phosphorus (P) behaviour. The aim of this study was to quantify the effects of pH on NH₃ volatilisation and residual nitrogen (N) in BRS following DAP applications. Methods The sponge-trapping and KCl-extraction method was used for determining NH₃ volatilisation from surface-applied DAP in samples of BRS collected from each of Alcoa's three Western Australia Refineries (Kwinana, Pinjarra, Wagerup) under various pH conditions (pH 4, 7, 9 and 11). Following cessation of volatilisation, the residual N was extracted from BRS using 2 M KCl and concentrations of NH ₄ ⁺ -N and NO ₃ ⁻ -N were determined by flow injection analysis. Results The quantities of NH₃ volatilised increased dramatically as the pH increased from 4 to 11. Much of the N lost as NH₃ (up to 95.2%) occurred within a short period (24 h to 7 days), particularly for the pH 9 and 11 treatments. Concentrations of residual NH ₄ ⁺ -N recovered in DAP-treated BRS at the end of the experiment decreased with increasing pH. This finding was consistent with increasing loss of N via volatilisation as pH increased. The concentration of NO ₃ ⁻ -N was very low due to no nitrification in BRS. Discussion The pH was a key driver for NH₃ volatilisation from DAP-treated BRS and primarily controlled N dynamics in BRS. Results indicate that NH₄ not adsorbed by BRS was highly susceptible to volatilisation. The likely lack of nitrifying bacteria did not allow conversion of ammonium to nitrate, thereby further exacerbating the potential for loss via volatilisation Conclusions It was demonstrated that the pH is the key factor controlling the loss of inorganic N from BRS. Although volatilisation was considerably lower at pH 4, achieving this pH reduction in the field is not possible at present. Findings from this study highlight the need to better understand which forms of N fertiliser are most suitable for use in highly alkaline BRS. Recommendation and perspectives Although pH reduction is the most likely means of stopping NH₃ volatilisation in BRS, it is economically and operationally unfeasible to add sufficient acidity for adequately lowering pH in the BRS for revegetation. More attention on forms of fertilisers more suitable to highly alkaline, microbially inert soil conditions appears to be warranted.
Afficher plus [+] Moins [-]Twenty years of elemental analysis of marine biota within the German Environmental Specimen Bank—a thorough look at the data Texte intégral
2010
Rüdel, Heinz | Fliedner, Annette | Kösters, Jan | Schröter-Kermani, Christa
Purpose As one component of the German ecological environment observation, the Environmental Specimen Bank program was initiated in the mid-1980s. Under the program, representative specimens of marine, fresh water, and terrestrial ecosystems are sampled regularly and archived under chemically stable conditions. An initial characterization of the samples provides data regarding the status quo of the respective ecosystems. The aim of the present publication is to give insight into these real-time monitoring data, which have been generated for the last 10 to 20 years. This is done exemplarily for the heavy metals cadmium (Cd), mercury (Hg), and lead (Pb) in marine specimens of the Baltic and the North Sea. Methods Bladder wrack (Fucus vesiculosus), blue mussel (Mytilus edulis), eelpout (Zoarces viviparus), and eggs of herring gulls (Larus argentatus) were sampled at one location in the Baltic Sea and at two sites in the North Sea (Schleswig-Holstein Wadden Sea and Lower Saxony Wadden Sea). Annual samples were pooled, homogenized, and analyzed for a set of elements. Cd and Pb were quantified after freeze-drying and microwave digestion using inductively coupled plasma-mass spectrometry. Total Hg in freeze-dried samples was determined by atomic absorption spectrometry using a direct mercury analyzer. Results Time series data covering up to two decades revealed comparable cadmium levels at all three locations. Concentrations in bladder wrack ranged between 0.10 and 0.37 µg/g on a wet weight basis (ww). Respective values for blue mussel and eelpout liver were 0.07-0.29 and 0.01-0.10 µg/g ww. Herring gull eggs were not included in cadmium analyses. Declining trends were observed in North Sea bladder wrack and mussels, eelpout from the Lower Saxony site, and mussels from the Baltic Sea. Upward trends were apparent in eelpout from the Schleswig-Holstein location. Mercury concentrations in Baltic Sea specimens ranged from 1.1-2.7 ng/g ww in bladder wrack to 2.6-5.1, 26-52, and 86-226 ng/g ww in blue mussel, eelpout muscle, and herring gull eggs, respectively. No temporal trends were observed. North Sea bladder wrack had accumulated 5.4-24 ng/g ww Hg. The respective Hg values for blue mussel and eelpout muscle were 19-64 and 73-187 ng/g ww. Highest Hg contents were detected in herring gull eggs (90-1,100 ng/g ww). Declining trends of Hg were observed in herring gull eggs at both North Sea locations and in blue mussels at the Lower Saxony site. Lead concentrations in Baltic Sea specimens were 48-222 ng/g ww in bladder wrack, 85-189 ng/g ww in blue mussel, 2.0-9.5 and 10-42 ng/g ww in eelpout muscle and liver, and 2.7-26 ng/g ww in herring gull eggs. In the North Sea, Pb concentrations were as follows: 68-397 ng/g ww in bladder wrack, 101-507 ng/g ww in blue mussels, 2.6-35 and 5.9-158 ng/g ww in eelpout muscle and liver, and 3.5-55 ng/g ww in herring gull eggs. Highest Pb-levels were found at the Lower Saxony site. Declining Pb-trends were observed in bladder wrack from the Baltic Sea; in bladder wrack and mussel at the Schleswig-Holstein location; and in bladder wrack, mussels, eelpout liver, and herring gull eggs at the Lower Saxony site. Conclusions During the 10 to 20 years of monitoring, reliable data were obtained which allow a good insight into metal contamination of marine biota. Assessment of the data according to OSPAR criteria (OSPAR 2005) revealed cadmium levels above the derived background concentrations in mussels of all three sites. Mercury levels above background concentrations were found at both North Sea locations, whereas only mussels at the Lower Saxony site had Pb concentrations above the reference value. Archived specimens are available for further analyses and questions which may arise in the future (speciation of elements, metallomics).
Afficher plus [+] Moins [-]